The Practice of Medicinal Chemistry
eBook - ePub

The Practice of Medicinal Chemistry

Camille Georges Wermuth,David Aldous,Pierre Raboisson,Didier Rognan

  1. 902 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

The Practice of Medicinal Chemistry

Camille Georges Wermuth,David Aldous,Pierre Raboisson,Didier Rognan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The Practice of Medicinal Chemistry, Fourth Edition provides a practical and comprehensive overview of the daily issues facing pharmaceutical researchers and chemists. In addition to its thorough treatment of basic medicinal chemistry principles, this updated edition has been revised to provide new and expanded coverage of the latest technologies and approaches in drug discovery.With topics like high content screening, scoring, docking, binding free energy calculations, polypharmacology, QSAR, chemical collections and databases, and much more, this book is the go-to reference for all academic and pharmaceutical researchers who need a complete understanding of medicinal chemistry and its application to drug discovery and development.

  • Includes updated and expanded material on systems biology, chemogenomics, computer-aided drug design, and other important recent advances in the field
  • Incorporates extensive color figures, case studies, and practical examples to help users gain a further understanding of key concepts
  • Provides high-quality content in a comprehensive manner, including contributions from international chapter authors to illustrate the global nature of medicinal chemistry and drug development research
  • An image bank is available for instructors at www.textbooks.elsevier.com

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist The Practice of Medicinal Chemistry als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu The Practice of Medicinal Chemistry von Camille Georges Wermuth,David Aldous,Pierre Raboisson,Didier Rognan im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Naturwissenschaften & Organische Chemie. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2015
ISBN
9780124172135
Section II
Lead Compound Discovery Strategies
Outline
Chapter 4

Strategies in the Search for New Lead Compounds or Original Working Hypotheses

Camille G. Wermuth1, Bruno Villoutreix2, Serge Grisoni3, Anne Olivier4 and Jean-Philippe Rocher5, 1Founder of Prestwick Chemical, Strasbourg, France, 2Université Paris Diderot Sorbonne Paris Cité, Inserm, Paris, France, 3Pierre Fabre Research Institute, Toulouse, Cédex, France, 4Sanofi-Aventis Recherche et Développement, Chilly-Mazarin, France, 5Pierre Fabre Research Institute, Castres, France
This chapter is presenting the various strategies used to find pertinent compounds as starting points for optimization up to a drug. The discovery strategies from the historical ones to the most modern approaches are reviewed. They consist into mainly five approaches: the improvement of already existing drugs, the systematic screening, the exploitation of observed biological activities, the attempts towards rational design and the target protein structure-based approaches. These strategies are not mutually exclusive and can be appropriately applied and combined.

Keywords

Lead; hits; analoging; SOSA; screening; biophysical technologies; rational design
So ist denn in der Strategie alles sehr einfach, aber darum nicht auch alles sehr leicht. (Thus in the strategy everything is very simple, but not necessarily very easy).
Carl von Clausewitz [1]

I Introduction

This chapter deals with the various strategies leading to active compounds and active compounds collections. The introduction of modern biology methods and technologies has driven the discovery process to a target-based approach. However, the discovery strategies leading to new drugs may also still address systems-based approaches such as the phenotypic screening methods [2]. The primary objective is to identify original and attractive starting points for therapeutic discovery programs. Such programs typically begin with the search for “hits.”

A Hits and Leads

A hit is an active substance having a preferential activity for the target and which satisfies all of the following criteria [3]: (1) reproducible activity in a relevant bioassay, (2) confirmed structure and high purity, (3) specificity for the target under study, (4) confirmed potential for novelty, and (5) a chemically tractable structure, that is, molecules presenting a certain affinity for a target.
Identifying hits for a new target usually involves screening of a wide range of structurally diverse small molecules in an in vitro bioassay. Alternatively, small molecules can be screened for their potential to modulate a biological process thought to be critical in disease or in which the target is thought to play a major role. Miniaturization and robotics means that the number of compounds that can be screened has greatly increased, and several thousand compounds can be screened in one day.
Once a hit is discovered, its activity must be confirmed and validated. Typical hit validation criteria are as follows: (1) the hit must be active in vitro and be amenable to in vivo activity in target or disease models; (2) the hit should not display human ether-a-go-go-related (hERG) toxicity; (3) the analogs of the hit must display clear structure–activity relationships (SAR); (4) basic physicochemical and ADME properties of the hit series must be evaluated in order to identify potential unwanted properties in the series and to assess structure–properties relationships (SPR); (5) the hit should not contain chemically reactive functions; and (6) the hit must provide patent opportunities. Only then does it becomes a lead substance, commonly named “lead.”
If a lead molecule emerges from these additional studies on SAR, absorption, distribution, metabolism, excretion (ADME), and toxicity, it acquires the “clinical drug candidate” status. After a short toxicological study, it fulfills the criteria required for administration to humans for initial clinical studies.

B The Main Hit or Lead Finding Strategies

A retrospective analysis of the ways leading to discovery of new drugs suggests that five successful strategies can yield new hits and/or lead compounds [4,5]. The first strategy is based on the modification and improvement of already existing active molecules. The second one consists of the systematic screening of sets of arbitrarily chosen compounds on selected biological assays. The third approach resides in the retroactive exploitation of various pieces of biological information that sometimes result from new discoveries made in biology and medicine, and sometimes are just the fruits of more or less fortuitous observations. The fourth route to new active compounds is a rational design based on the knowledge of the molecular cause of the pathological dysfunction. The fifth strategy is based on the structural knowledge of the target combined with computational methods or biophysical technologies of ligand–protein interaction.

II First Strategy: Analog Design

The most popular strategy in drug design is the synthesis of analogs of existing active molecule...

Inhaltsverzeichnis