Laser Velocimetry in Fluid Mechanics
eBook - ePub

Laser Velocimetry in Fluid Mechanics

Alain Boutier, Alain Boutier

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Laser Velocimetry in Fluid Mechanics

Alain Boutier, Alain Boutier

Book details
Book preview
Table of contents
Citations

About This Book

In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.
Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.
This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on ā€œCancel Subscriptionā€ - itā€™s as simple as that. After you cancel, your membership will stay active for the remainder of the time youā€™ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlegoā€™s features. The only differences are the price and subscription period: With the annual plan youā€™ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weā€™ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Laser Velocimetry in Fluid Mechanics an online PDF/ePUB?
Yes, you can access Laser Velocimetry in Fluid Mechanics by Alain Boutier, Alain Boutier in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Mechanics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley-ISTE
Year
2013
ISBN
9781118569337
Edition
1
Subtopic
Mechanics

Chapter 1

Measurement Needs in Fluid Mechanics 1

Measurements provide useful information for the interpretation of physical phenomena and for code validation. Fluid mechanics is based on nonlinear Navierā€“ Stokes equations, which are very difficult to solve directly; simplifying assumptions or numerical approximations are used in order to make calculation times reasonable. Sometimes empirical relations are established when theory is not available; in particular, turbulent regime analysis leads to the building of new theories that must be verified. All these processes require validation by experiments and accurate measurements.
The most famous names in physics are associated with knowledge evolution in fluid mechanics, from Newton to Euler, Navier and Stokes, and also Bernoulli, Lagrange, Leibniz and Cauchy.
Theoretical approaches consist of mathematical resolution of partial differential equations. When an analytical solution is not possible, numerical approaches are used, but must be verified by wellā€“documented experiments. In fluid mechanics, more than elsewhere, the three approaches (theory, simulation, and experimentation) often cannot be separated.
Theoretical treatment is exact and universal, but requires good physical knowledge of the phenomena. Boundary conditions are often made ideal and solutions are not available for complex flow configurations.
Numerical simulation provides complete flow information, with conditions that can be easily modified. Nevertheless, the process is often very expensive to put into operation, is limited by the computer power, and as turbulence models are not universal, a certain ability is required for correct employment.
Experimental investigations make parametric studies possible, in order to recognize which parameters are influent; sometimes it is the only way to obtain information. Yet they may appear rather complicated and expensive to implement; not all the variables can be measured and the intrusive character of the measuring method must be minimized.

1.1. Navierā€“Stokes equations

General equations in fluid mechanics are based on mass and energy conservation, as well as on movement quantity equations. These equations, called Navierā€“Stokes equations, make use of spatial and temporal partial derivatives of velocity and temperature, at first and second order. Even if exact solutions exist for simple laminar flows, for real flows, which are turbulent and 3D, calculations become much too complex to be solved by current computers within acceptable timescales. Therefore, numerical solutions are not exact and generate errors that must be evaluated by experiments and appropriate measurements.
The continuity equation (mass conservation) is expressed by:
[1.1]
images
where Ļ is the volume mass and
images
the velocity vector, with (u, v, w) coordinates in the frame (x, y, z) or (u1, u2, u3) in the frame (x1, x2, x3).
For an incompressible flow (Ļ = constant), it becomes:
[1.2]
images
The movement quantity equation expresses the fact that the system movement quantity derivative is equal to the sum of the forces acting on the system. Using some assumptions, mainly that of Newtonian flow, this vector equation is written:
[1.3]
images
images
is the constraint tensor, which makes pressure P and dynamic viscosity Āµ appear.
images
represents the unity tensor.
In incompressible conditions, movement quantity equation along x is reduced to:
[1.4]
images
where v = Āµ/Ļ is the kinematic v...

Table of contents