NeuroTribes
eBook - ePub

NeuroTribes

The Legacy of Autism and How to Think Smarter About People Who Think Differently

Steve Silberman

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

NeuroTribes

The Legacy of Autism and How to Think Smarter About People Who Think Differently

Steve Silberman

Book details
Book preview
Table of contents
Citations

About This Book

Winner of the 2015 Samuel Johnson Prize for Non-Fiction
Shortlisted for the Wellcome Book Prize
A Sunday Times and New York Times bestseller
Foreword by Oliver Sacks
What is autism: a devastating developmental condition, a lifelong disability, or a naturally occurring form of cognitive difference akin to certain forms of genius? In truth, it is all of these things and more - and the future of our society depends on our understanding it.

Following on from his groundbreaking article 'The Geek Syndrome', Wired reporter Steve Silberman unearths the secret history of autism, long suppressed by the same clinicians who became famous for discovering it, and finds surprising answers to the crucial question of why the number of diagnoses has soared in recent years.

Going back to the earliest autism research and chronicling the brave and lonely journey of autistic people and their families through the decades, Silberman provides long-sought solutions to the autism puzzle while casting light on the growing movement of 'neurodiversity' and mapping out a path towards a more humane world for people with learning differences.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is NeuroTribes an online PDF/ePUB?
Yes, you can access NeuroTribes by Steve Silberman in PDF and/or ePUB format, as well as other popular books in Medicine & Medical Theory, Practice & Reference. We have over one million books available in our catalogue for you to explore.

Information

Year
2017
ISBN
9781925575507
One
THE WIZARD OF CLAPHAM COMMON
As an experimenter he did not accept nature as given, but adapted it to respond to his questions.
—CHRISTA JUNGNICKEL AND RUSSELL MCCORMMACH,
Cavendish: The Experimental Life
Every evening in the last years of the eighteenth century, at precisely the same hour, a solitary figure stepped forth from the most unusual house on Clapham Common to take his nightly constitutional. To avoid the prying eyes of his neighbors, he stuck to the middle of the road, never hailing those who recognized him or touching his hat to acknowledge passersby. Dressed in fussy clothes that had last been in fashion decades earlier, he walked with a distinctive slouching gait, his left hand held behind his back. His route, like his departure time, never varied. He would proceed down Dragmire Lane to Nightingale Lane and walk for another mile, past quiet town houses and rows of oak and hawthorn trees, until he arrived at Wandsworth Common. Then he would walk back the way he came.
He had made only one revision to this itinerary in a quarter of a century, after attracting the attention of two women who planted themselves at a corner where they were likely to catch sight of him. Spotting them from some distance away, he abruptly launched himself in the perpendicular direction, making an undignified but effective escape through the muck of a freshly plowed field. After that, he scheduled his walks after dusk, when he was least likely to be seen.
He guarded his precious solitude within the boundaries of his estate as rigorously as he did outside them, communicating with his household staff in notes left on a hall table. A maid wielding a broom once made the error of surprising him in a stairwell, and his swift response was to order the construction of a second set of steps at the rear of the residence to prevent such an incident from ever happening again.
His neighbors in this rustic London suburb knew little about his solitary labor in the shed beside his house that would one day make his name immortal. There were rumors going around Clapham that he was some sort of wizard. Admittedly, the most striking feature of his estate did not help to dispel those rumors. From a little hillock in the yard, an eighty-foot pole projected into the sky, like a ship’s mast rising from dry land.
By declining to sit for a formal portrait—usually a de rigueur concession for a man of his station—he nearly managed to block out the inquisitive gazes of historians from the future. The sole image of Henry Cavendish captured in his lifetime shows an aristocratic-looking man in a frock coat, frilled shirt-wrists, and white stockings, wearing a knocker-tailed periwig under a black three-cornered hat. This was a defiantly unchic style of dress even in the late 1700s, and he wore the same outfit every day of his adult life. Each year, when his coat—always the same shade of gray-green or violet—was on the verge of fading, he would prompt his tailor to sew up another one, identical to the first.
He was equally consistent in his dining habits. Though his personal fortune could have afforded him an ever-changing banquet of exotic delicacies shipped in from the farthest reaches of the empire, he subsisted for decades on the same humble dish at nearly every meal: leg of mutton. Once a week, when he took supper with his colleagues at the Royal Society Club, he invariably sat in the same chair, after hanging his hat and coat from a peg that may as well have had a plaque beside it engraved with his name.
That’s how a sly young draftsman named William Alexander finally succeeded in capturing his portrait—by acting like the Georgian equivalent of a paparazzo. After talking his way into the club, Alexander parked himself unobtrusively in a corner of the room and sketched Cavendish’s hat and coat dangling from the inevitable peg. At a subsequent meal, he drew his subject’s face as he prepared to tuck into his dish of mutton. Then the artist combined the two images, yielding a composite portrait of the complete man.
Cavendish’s inflexible routines and unvarying timetables were no more subject to amendment than the tides in Portsmouth harbor. On one rare occasion when he invited four Royal Society colleagues to dine with him in Clapham, a cook boldly ventured to suggest that a leg of mutton would hardly provide an adequate repast for five men. He replied, with characteristic terseness, “Well, then, get two.”
DESPITE HIS ECCENTRIC COUTURE and the strange totem rising from his backyard, Henry Cavendish was not a wizard. He was, in eighteenth-century terms, a natural philosopher, or what we now call a scientist. (The word scientist wasn’t coined until the nineteenth century, when it was proposed as a counterpart to artist by oceanographer and poet William Whewell.) He was not only one of the most ingenious natural philosophers who ever lived, he was one of the first true scientists in the modern sense.
His tireless explorations ranged across an entire university’s worth of disciplines, encompassing chemistry, math, physics, astronomy, metallurgy, meteorology, pharmacy, and a few fields that he pioneered on his own. In an age when data-mining the Lord’s creation was not yet regarded as a legitimate profession but more like an enlightened hobby, he defined the scope, conduct, and ambition of the scientific method for centuries to come.
The first surviving account of his work in the lab, a sheaf of papers dated 1764, details his study of arsenic and its metamorphosis into an off-white powder called “arsenical salt,” now known as potassium arsenate. Like most of his peers, Cavendish mistakenly believed that the hidden agent of this transformation was phlogiston, an element akin to fire. By understanding this element, he hoped to discover a key to many types of chemical reactions. The phlogiston hypothesis turned out to be bunk—and he quickly abandoned it—but his observations in the lab were so astute that he anticipated the synthesis of potassium arsenate by ten years, using a simpler method than the man usually given credit for that discovery, pharmacist Carl Wilhelm Scheele. Unlike Scheele, however, Cavendish neglected to issue the equivalent of a press release, so he got none of the credit—while Scheele became famous by popularizing an inferior method of synthesis.
Cavendish’s next major breakthroughs were in the study of the atmosphere. A late bloomer in the journals compared to his peers, he didn’t even submit his first paper for publication until age thirty-five, chronicling his discovery of an unstable gas he called “inflammable air”—the element now known as hydrogen, the basic building block of the universe. He then determined the composition of water by using a spark of electricity to combine this new gas and “dephlogisticated” air—oxygen. When he removed the nitrogen and oxygen from a flask in his lab, he noticed that a tiny bubble of a third gas remained. In that bubble was the element argon, which wouldn’t be officially discovered for another hundred years.
Scores of equally bold experiments followed. Cavendish analyzed the mathematics of musical intervals, formulated the theory of electrical potential, and was the first scientist to realize that a solution’s electrical conductivity varies with its concentration. He proposed that a long-tailed fish called the torpedo was able to generate its own current like a living battery, and then proved it by sculpting an artificial fish in his lab out of shoe leather, pewter plates, glass tubes, and sheepskin and hooking it up to Leyden jars, creating a perfect simulation of the fish’s electrical organs.
In 1769, lightning struck the steeple of the church of San Nazaro in Brescia, an ancient Roman city built at the foot of the Alps. The massive high-voltage pulse was conducted through the walls of the sanctuary to the basement, where the Venetian army had inconveniently stored one hundred tons of gunpowder. The resulting blast killed three thousand people, knocking one-sixth of the city flat. To prevent a similar fate from befalling the British army’s powder cache in its arsenal at Purfleet, the Royal Society appointed Lord Henry to the “lightning committee” assigned to studying ways of insulating it. Among the foreign dignitaries who came along on that trip was a natural philosopher from the thirteen colonies who knew a thing or two about electricity himself—Benjamin Franklin.
The lightning committee devised a crafty plan, based on Cavendish’s prescient theories of electricity, to surround a warehouse with metal rods, tipped with copper conductors, to draw impertinent discharges away from the unstable powder. While his paper on electrical theory was dismissed as too abstruse during his lifetime, two years after his death, a Royal Society historian declared it “the most rigid and satisfactory explanation of the phenomena of electricity . . . beyond dispute, the most important treatise on the subject that has ever been published.”
Cavendish submitted only a fraction of his work to the Royal Society journal, Philosophical Transactions. But he was an exhaustive chronicler of his own research, churning out an endless stream of carefully annotated tables, charts, graphs, and notebooks that only a small circle of his colleagues ever saw. He prized the open and egalitarian sharing of data but felt no compulsion to take credit for his discoveries. He preferred to avoid competition and controversy, and simply wanted to perform his experiments in peace.
As a result, the formula that describes the flow of electrical current as a function of resistance is known as Ohm’s law rather than Cavendish’s law, though he anticipated the Bavarian physicist by a century. Likewise, a law describing electrostatic interaction between charged particles—the foundation of modern electromagnetic theory—is synonymous with the name of French physicist Charles Augustin de Coulomb, though Cavendish thought of it first. His seminal discovery that water is not a monolithic element but composed of hydrogen and oxygen is usually attributed to Antoine Lavoisier. Once again, Cavendish had figured this out earlier but neglected to make a fuss about it—unlike the grandiose Lavoisier, who invited members of the Royal Academy to assist him in a public demonstration. Thus it is Lavoisier, rather than Cavendish, who is hailed as the father of modern chemistry, though his experimental methods made that revolution possible.
Cavendish may have dressed like a man from the past, but he lived like one from the future. If he had been born three centuries later, he would have been hailed as a visionary “maker”—a hacker who isn’t afraid to get his hands dirty in a machine shop.
II
To say that Cavendish’s distaste for hype and self-promotion extended to his personal life would be an understatement. The statesman Lord Henry Brougham observed in 1845 that his taciturn colleague “uttered fewer words in the course of his life than any man who lived to fourscore years, not at all excepting the monks of La Trappe.”
The source of this apparent shyness was social anxiety so intense that it nearly immobilized him in certain situations. Brougham described his face as “intelligent and mild, though, from the nervous irritation which he seemed to feel, the expression could hardly be called calm.” At weekly gatherings of his colleagues hosted by Royal Society president Joseph Banks, he would pause outside on the stoop, hesitant to knock on the door, until the arrival or departure of another guest virtually forced him to go in.
On one such occasion, he was introduced to a fan from Austria who regaled him with fulsome praise. Cavendish stood silent, eyes downcast, until he spotted an opening in the crowd, at which point he bolted from the room and leapt into his carriage, which carried him directly home. His anxiety may have been exacerbated by the fact that the intonations of his voice struck others as odd and displeasing—“squeaking,” according to the chemist Humphry Davy, who said that he seemed “even to articulate with difficulty.” Another colleague described him uttering a “shrill cry” at Royal Society meetings as he “shuffled quickly from room to room” to avoid being directly engaged. Cavendish was particularly discomfited if anyone tried to catch his eye.
It is not true, however, that he wanted to remove himself entirely from the company of his peers; he just wanted to stand off to the side, soaking everything in. Two scientists conversing on a topic of interest at the Royal Society’s Monday Club might notice a hunched figure in a gray-green coat lurking in the shadows, listening intently. Eager to solicit his appraisal of their work, his fellow natural philosophers devised a devious but effective method of drawing him into an exchange.
“The way to talk to Cavendish is never to look at him,” said astronomer Francis Wollaston, “but to talk as it were into a vacancy, and then it is not unlikely but you may set him going.” Once he was set going, it turned out that he had plenty to say. “If he speaks to you, continue the conversation,” Wollaston advised. “He is full of information, particularly as to chemistry.”
One of the few people that Lord Henry welcomed into the innermost precincts of his life was Charles Blagden, a young scientist he met through the Royal Society who was similar to him in several important ways. He was relentlessly curious, was scrupulous in the conduct of his experiments, and had an indelible memory for facts. But Blagden was also an avid reader, linguist, and conversationalist who maintained a thriving correspondence with researchers and explorers all over the world. “It is scarcely possible that any philosophical discoveries can be made in England,” he once bragged, “without coming to my knowledge by one channel or another.”
Together, the two men forged a mutually indispensable alliance. Cavendish became Blagden’s human Google, answering any query that came up in his own work. The elder scientist’s guiding hand was visible in six of the ten papers that Blagden published in Philosophical Transactions. In return, the reclusive lord was able to keep up with the state of his art without having to schmooze his way through the eighteenth-century equivalent of TED conferences. Through Blagden, his life was richly interwoven with the lives and work of a global community of thinkers who were kept at a safe and comfortable distance.
III
Partly owing to Cavendish’s great wealth, his preference for solitude was often confused with arrogance, selfishness, or disdain. A fellow scientist once described him as “the coldest and most indifferent of mortals,” while others characterized him as insensitive, blind to the emotions of others, or mean. But he was not a nasty or vindictive man; he simply had no idea how to conduct himself in public. After a conversation with Blagden about the Monday Club, Cavendish explained his behavior by saying that some men lack “certain feelings,” declining to be any more specific than that. In his diary, Blagden sympathetically described his mentor as a man of “no affections” who nonetheless “always meant well.”
The most probing glimpse into the soul of this elusive genius was provided by the chemist George Wilson, who wrote the first full-length biography of Cavendish in 1851 based on accounts by his contemporaries. Appraising his subject’s seeming lack of interest in anything but science, Wilson painted Cavendish’s emotional life as a series of negations: “He did not love; he did not hate; he did not hope; he did not fear . . . His brain seems to have been but a calculating engine . . . He was not a Poet, a Priest, or a Prophet, but only a cold, clear intelligence, raying down pure white light, which brightened everything on which it fell, but warmed nothing.”
Wilson also recognized, however, that Cavendish’s reserve made it possible for him to conduct his research with such single-minded intensity. He was not self-absorbed; he was the opposite. He was wholly engaged in his study of nature, which provided its own form of communion—if not with the souls of other people, then with the hidden forces behind the visible face of things.
Wisely, therefore, he dwelt apart, and bidding the world farewell, took the self-imposed vows of a Scientific Anchorite, and, like the Monks of old, shut himself up within his cell. It was a kingdom sufficient for him, and from its narrow window he saw as much of the Universe as he cared to see.
The kingdom of natural philosophy that Cavendish built on Clapham Common was surely more than “sufficient”—it would have been an extraordinary resource for a scientist in any century. The colleagues invited to join him for a dish of mutton must have seen something amazing: a house transformed into a vast apparatus for interrogating the mysteries of existence.
The first thing a visitor arriving by carriage from London would have noticed was that eighty-foot pole aimed at the sky, supported by huge struts near the base. Contrary to local rumors, it was not an instrument of divination but a towering mount for one of Cavendish’s telescopes. Upon renting the estate in 1785, he immediately sketched out a design for this impressive piece of equipment, a crucial adjunct to his plan to convert the upper floor of the house into an astral observatory, complete with a transit room for recording the positions of stars as they traversed the meridian.
He turned the downstairs drawing room into a lab, installing a furnace, crucible, and fume hood, and stocking it with hundreds of beakers, flasks, pipes, and balances. In an adjoining room, he built a forge. Cavendish’s passion for precision was manifest in the astonishing variety of measuring instruments—barometers, clocks, sundials, compasses, and rain gauges—arrayed throughout the house and grounds. When he took a road trip with Blagden (never for a mere vacation, but, say, to visit a factory to take notes on the production of iron), he affixed a primitive odometer called a “way-wiser” to the wheels of his carriage, so they would know precisely how many miles they had traveled. He also brought along a thermometer to take the temperature of any wells they happened to pass.
As a young inductee in the Royal Society, Cavendish was appalled to learn that the thermometers of his day could differ in their readings of the boiling point of water by two or three degrees. To the roster of his servants in Clapham, he added a dedicated instrument maker. His cabinets were filled with custom-made rulers, scales, triangles, maps, and other measuring devices fashioned of wood and brass. A scaffolding outside the house served as a mount for meteorological instruments. No potential source of data on the estate was wasted—not the wind, the rain, the passages of sunlight through the garden, nor the weight of damp air collecting in the branches of the oaks that stood around the house like sentinels.
Even the front yard was pressed into the service of his quantifying muse. The lawn, according to Wilson, “was invaded by a wooden stage, from which access could be had to a large tree, to the top of which Cavendish, in the course of his astronomical, meteorological, electrical, or other researches occasionally ascended.” Six years after his death, when the last of his gear went on auction after being thoroughly picked over by his colleagues, eleven telescopes and forty-four thermometers were still available.
The contents of a lab cabinet cannot provide an inventory of a man’s emotional life. But in this way too, Cavendish stayed out of view. No revealing diary entries, telling admissions, or confessions of unrequited yearning have come to light in his letters, which are predictably focused on science and the minutiae of his mundane affairs. Humphry Davy—a Byronically charismatic figure whose lectures drew standing-room-only crowds—clearly wanted to forge a friendship with the man he regarded as a mentor, but anything beyond a working relationship was perpetually out of reach. “He gave me once some bits of platinum, for my experiments, and came to see my results on the decomposition of the alkalis,” Davy recalled. “But he encouraged no intimacy with anyone.” After Cavendish’s death, he told Wilson that he considered Cavendish “a great man, with extraordinary singularities.”
Yet the life of a tree-climbing scientist can hardly be considered barren or bereft of fulfillment. He transformed his whole envir...

Table of contents