📖[PDF] Exploratory Data Analysis with MATLAB by Wendy L. Martinez | Perlego
Get access to over 750,000 titles
Start your free trial today and explore our endless library.
Join perlego now to get access to over 750,000 books
Join perlego now to get access to over 750,000 books
Join perlego now to get access to over 750,000 books
Join perlego now to get access to over 750,000 books
Exploratory Data Analysis with MATLAB
Exploratory Data Analysis with MATLAB
📖 Book - PDF

Exploratory Data Analysis with MATLAB

Wendy L. Martinez, Angel R. Martinez, Jeffrey Solka
shareBook
Share book
pages
590 pages
language
English
format
ePUB (mobile friendly) and PDF
availableOnMobile
Available on iOS & Android
📖 Book - PDF

Exploratory Data Analysis with MATLAB

Wendy L. Martinez, Angel R. Martinez, Jeffrey Solka
Book details
Table of contents
Citations

About This Book

Praise for the Second Edition:
"The authors present an intuitive and easy-to-read book. … accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB."
—Adolfo Alvarez Pinto, International Statistical Review

" Practitioners of EDA who use MATLAB will want a copy of this book. … The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA.

—David A Huckaby, MAA Reviews

Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models.

Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book's website.

New to the Third Edition

  • Random projections and estimating local intrinsic dimensionality


  • Deep learning autoencoders and stochastic neighbor embedding


  • Minimum spanning tree and additional cluster validity indices


  • Kernel density estimation


  • Plots for visualizing data distributions, such as beanplots and violin plots


  • A chapter on visualizing categorical data


Read More

Information

Publisher
CRC Press
Year
2017
ISBN
9781315349848
Topic
Mathematics
Subtopic
Probability & Statistics
Edition
3

Table of contents