Plant Tissue Culture
eBook - ePub

Plant Tissue Culture

Techniques and Experiments

Roberta H. Smith

Share book
  1. 208 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Plant Tissue Culture

Techniques and Experiments

Roberta H. Smith

Book details
Book preview
Table of contents
Citations

About This Book

Plant Tissue Culture, Third Edition builds on the classroom tested, audience proven manual that has guided users through successful plant culturing A.tumefaciens mediated transformation, infusion technology, the latest information on media components and preparation, and regeneration and morphogenesis along with new exercises and diagrams provide current information and examples.

The included experiments demonstrate major concepts and can be conducted with a variety of plant material that are readily available throughout the year. This book provides a diverse learning experience and is appropriate for both university students and plant scientists.

  • Provides new exercises demonstrating tobacco leaf infiltration to observe transient expression of proteins and subcellular location of the protein, and information on development of a customized protocol for protoplast isolation for other experimental systems
  • Includes detailed drawings that complement both introductions and experiments
  • Guides reader from lab setup to supplies, stock solution and media preparation, explant selection and disinfestations, and experimental observations and measurement
  • Provides the latest techniques and media information, including A. tumefaciens mediated transformation and infusion technology
  • Fully updated literature

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Plant Tissue Culture an online PDF/ePUB?
Yes, you can access Plant Tissue Culture by Roberta H. Smith in PDF and/or ePUB format, as well as other popular books in Ciencias biológicas & Botánica. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
ISBN
9780124159853
Subtopic
Botánica
Edition
3

Chapter 1

History of Plant Cell Culture

Trevor A. Thorpe
The University of Calgary

Chapter Outline

Introduction
The Early Years
The Era of Techniques Development
The Recent Past
Cell Behavior
Plant Modification and Improvement
Pathogen-Free Plants and Germplasm Storage
Clonal Propagation
Product Formation
The Present Era

Introduction

Plant cell/tissue culture, also referred to as in vitro, axenic, or sterile culture, is an important tool in both basic and applied studies as well as in commercial application (see Thorpe, 1990, 2007 and Stasolla & Thorpe 2011). Although Street (1977) has recommended a more restricted use of the term, plant tissue culture is generally used for the aseptic culture of cells, tissues, organs, and their components under defined physical and chemical conditions in vitro. Perhaps the earliest step toward plant tissue culture was made by Henri-Louis Duhumel du Monceau in 1756, who, during his pioneering studies on wound-healing in plants, observed callus formation (Gautheret, 1985). Extensive microscopic studies led to the independent and almost simultaneous development of the cell theory by Schleiden (1838) and Schwann (1839). This theory holds that the cell is the unit of structure and function in an organism and therefore capable of autonomy. This idea was tested by several researchers, but the work of Vöchting (1878) on callus formation and on the limits to divisibility of plant segments was perhaps the most important. He showed that the upper part of a stem segment always produced buds and the lower end callus or roots independent of the size until a very thin segment was reached. He demonstrated polar development and recognized that it was a function of the cells and their location relative to the cut ends.
The theoretical basis for plant tissue culture was proposed by Gottlieb Haberlandt in his address to the German Academy of Science in 1902 on his experiments on the culture of single cells (Haberlandt, 1902). He opined that to “my knowledge, no systematically organized attempts to culture isolated vegetative cells from higher plants have been made. Yet the results of such culture experiments should give some interesting insight to the properties and potentialities which the cell as an elementary organism possesses. Moreover, it would provide information about the inter-relationships and complementary influences to which cells within a multicellular whole organism are exposed” (from the English translation by Krikorian & Berquam, 1969). He experimented with isolated photosynthetic leaf cells and other functionally differentiated cells and was unsuccessful, but nevertheless he predicted that “one could successfully cultivate artificial embryos from vegetative cells.” He thus clearly established the concept of totipotency, and further indicated that “the technique of cultivating isolated plant cells in nutrient solution permits the investigation of important problems from a new experimental approach.” On the basis of that 1902 address and his pioneering experimentation before and later, Haberlandt is justifiably recognized as the father of plant tissue culture. Greater detail on the early pioneering events in plant tissue culture can be found in White (1963), Bhojwani and Razdan (1983), and Gautheret (1985).

The Early Years

Using a different approach Kotte (1922), a student of Haberlandt, and Robbins (1922) succeeded in culturing isolated root tips. This approach, of using explants with meristematic cells, led to the successful and indefinite culture of tomato root tips by White (1934a). Further studies allowed for root culture on a completely defined medium. Such root cultures were used initially for viral studies and later as a major tool for physiological studies (Street, 1969). Success was also achieved with bud cultures by Loo (1945) and Ball (1946).
Embryo culture also had its beginning early in the nineteenth century, when Hannig in 1904 successfully cultured cruciferous embryos and Brown in 1906 barley embryos (Monnier, 1995). This was followed by the successful rescue of embryos from nonviable seeds of a cross between Linum perenne × L. austriacum (Laibach, 1929). Tukey (1934) was able to allow for full embryo development in some early-ripening species of fruit trees, thus providing one of the earliest applications of in vitro culture. The phenomenon of precocious germination was also encountered (LaRue, 1936).
The first true plant tissue cultures were obtained by Gautheret (1934, 1935) from cambial tissue of Acer pseudoplatanus. He also obtained success with similar explants of Ulmus campestre, Robinia pseudoacacia, and Salix capraea using agar-solidified medium of Knop’s solution, glucose, and cysteine hydrochloride. Later, the availability of indole acetic acid and the addition of B vitamins allowed for the more or less simultaneous demonstrations by Gautheret (1939) and Nobécourt (1939a) with carrot root tissues and White (1939a) with tumor tissue of a Nicotiana glauca × N. langsdorffii hybrid, which did not require auxin, that tissues could be continuously grown in culture and even made to differentiate roots and shoots (Nobécourt, 1939b; White, 1939b). However, all of the initial explants used by these pioneers included meristematic tissue. Nevertheless, these findings set the stage for the dramatic increase in the use of in vitro cultures in the subsequent decades.

The Era of Techniques Development

The 1940s, 1950s, and 1960s proved an exciting time for the development of new techniques and the improvement of those already available. The application of coconut water (often incorrectly stated as coconut milk) by Van Overbeek et al. (1941) allowed for the culture of young embryos and other recalcitrant tissues, including monocots. As well, callus cultures of numerous species, including a variety of woody and herbaceous dicots and gymnosperms as well as crown gall tissues, were established (see Gautheret, 1985). Also at this time, it was recognized that cells in culture underwent a variety of changes, including loss of sensitivity to applied auxin or habituation (Gautheret, 1942, 1955) as well as variability of meristems formed from callus (Gautheret, 1955; Nobécourt, 1955). Nevertheless, it was during this period that most of the in vitro techniques used today were largely developed.
Studies by Skoog and his associates showed that the addition of adenine and high levels of phosphate allowed nonmeristematic pith tissues to be cultured and to produce shoots and roots, but only in the presence of vascular tissue (Skoog & Tsui, 1948). Further studies using nucleic acids led to the discovery of the first cytokinin (kinetin) as the breakdown product of herring sperm DNA (Miller et al., 1955). The availability of kinetin further increased the number of species that could be cultured indefinitely, but perhaps most importantly, led to the recognition that the exogenous balance of auxin and kinetin in the medium influenced the morphogenic fate of tobacco callus (Skoog & Miller, 1957). A relative high level of auxin to kinetin favored rooting, the reverse led to shoot formation, and intermediate levels to the proliferation of callus or wound parenchyma tissue. This morphogenic model has been shown to operate in numerous species (Evans et al., 1981). Native cytokinins were subsequently discovered in several tissues, including coconut water (Letham, 1974). In addition to the formation of unipolar shoot buds and roots, the formation of bipolar somatic embryos (carrot) were first reported independently by Reinert (1958, 1959) and Steward et al. (1958).
The culture of single cells (and small cell clumps) was achieved by shaking callus cultures of Tagetes erecta and tobacco and subsequently placing them on filter paper resting on well-established callus, giving rise to the so-called nurse culture (Muir et al., 1954, 1958). Later, single cells could be grown in medium in which tissues had already been grown, i.e., conditioned medium (Jones et al., 1960). As well, Bergmann (1959) incorporated single cells in a 1-mm layer of solidified medium where some cell colonies were formed. This technique is widely used for cloning cells and in protoplast culture (Bhojwani & Razdan, 1983). Kohlenbach (1959) finally succeeded in the culture of mechanically isolated mature differentiated mesophyll cells of Macleaya cordata and later induced somatic embryos from callus (Kohlenbach, 1966). The first large-scale culture of plant cells was reported by Tulecke and Nickell (1959), who grew cell suspensions of Ginkgo, holly, Lolium, and rose in simple sparged 20-liter carboys. Utilizing coconut water as an additive to fresh medium, instead of using conditioned medium, Vasil and Hildebrandt (1965) finally realized Haberlandt’s dream of producing a whole plant (tobacco) from a single cell, thus demonstrating the totipotency of plant cells.
The earliest nutrient media used for growing plant tissues in vitro were based on the nutrient formulations for whole plants, for which they were many (White, 1963); but Knop’s solution and that of Uspenski and Uspenskia were used the most and provided less than 200 mg/liter of total salts. Heller (1953), based on studies with carrot and Virginia creeper tissues, increased the concentration of salts twofold, and Nitsch and Nitsch (1956) further increased the salt concentration to ca 4 g/liter, based on their work with Jerusalem artichoke. However, these changes did not provide optimum growth for tissues, and complex addenda, such as yeast extract, protein hydrolysates, and coconut water, were frequently required. In a different approach based on an examination of the ash of tobacco callus, Murashige and Skoog (1962) developed a new medium. The concentration of some salts were 25 times that o...

Table of contents