
Applied Unsupervised Learning with Python
Discover hidden patterns and relationships in unstructured data with Python
- 482 pages
- English
- ePUB (mobile friendly)
- Available on iOS & Android
Applied Unsupervised Learning with Python
Discover hidden patterns and relationships in unstructured data with Python
About this book
Design clever algorithms that can uncover interesting structures and hidden relationships in unstructured, unlabeled data
Key Features
- Learn how to select the most suitable Python library to solve your problem
- Compare k-Nearest Neighbor (k-NN) and non-parametric methods and decide when to use them
- Delve into the applications of neural networks using real-world datasets
Book Description
Unsupervised learning is a useful and practical solution in situations where labeled data is not available.
Applied Unsupervised Learning with Python guides you on the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The course begins by explaining how basic clustering works to find similar data points in a set. Once you are well versed with the k-means algorithm and how it operates, you'll learn what dimensionality reduction is and where to apply it. As you progress, you'll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. You will complete the course by challenging yourself through various interesting activities such as performing a Market Basket Analysis and identifying relationships between different merchandises.
By the end of this course, you will have the skills you need to confidently build your own models using Python.
What you will learn
- Understand the basics and importance of clustering
- Build k-means, hierarchical, and DBSCAN clustering algorithms from scratch with built-in packages
- Explore dimensionality reduction and its applications
- Use scikit-learn (sklearn) to implement and analyse principal component analysis (PCA)on the Iris dataset
- Employ Keras to build autoencoder models for the CIFAR-10 dataset
- Apply the Apriori algorithm with machine learning extensions (Mlxtend) to study transaction data
Who this book is for
This course is designed for developers, data scientists, and machine learning enthusiasts who are interested in unsupervised learning. Some familiarity with Python programming along with basic knowledge of mathematical concepts including exponents, square roots, means, and medians will be beneficial.
Frequently asked questions
- Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
- Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Information
Chapter 1
Introduction to Clustering
Learning Objectives
- Distinguish between supervised learning and unsupervised learning
- Explain the concept of clustering
- Implement k-means clustering algorithms using built-in Python packages
- Calculate the Silhouette Score for your data
Introduction
Unsupervised Learning versus Supervised Learning

Figure 1.1: Differences between unsupervised and supervised learning
Clustering
Identifying Clusters

Figures 1.2: Two distinct scatterplots

Figure 1.3: Scatterplots clearly showing clusters that exist in a provided dataset
Table of contents
- Preface
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Appendix