Solutions Manual to accompany Introduction to Linear Regression Analysis
eBook - ePub

Solutions Manual to accompany Introduction to Linear Regression Analysis

Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Solutions Manual to accompany Introduction to Linear Regression Analysis

Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition.Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Solutions Manual to accompany Introduction to Linear Regression Analysis un PDF/ePUB en línea?
Sí, puedes acceder a Solutions Manual to accompany Introduction to Linear Regression Analysis de Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining en formato PDF o ePUB, así como a otros libros populares de Matemáticas y Probabilidad y estadística. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Wiley
Año
2013
ISBN
9781118548509
Categoría
Matemáticas
Edición
5

Chapter 3

Multiple Linear Regression

3.1 a.
= −1.8 + .0036x2 + .194x7 − .0048x8
b. Regression is significant.
c. All three are significant.
Coefficient test statistic p-value
β2 5.18 0.000
β7 2.20 0.038
β8 −3.77 0.001
d. R2 = 78.6% and R2Adj = 76.0%
e. F0 = (257.094 − 243.03)/2.911 = 4.84 which is significant at α = 0.05. The test statistic here is the square of the t-statistic in part c.
3.2 Correlation coefficient between yi and
i is .887. So (.887)2 = .786 which is R2.
3.3 a. A 95% confidence interval on the slope parameter β7 is
7 ± 2.064(.08823) = (.012, .376)
b. A 95%. confidence interval on the mean number of games won by a team when x2 = 2300, x7 = 56.0 and x8 = 2100 is
3.4 a.
= 17.9 + .048x7 − .00654x8 with F = 15.13 and p = 0.000 which is significant.
b. R2 = 54.8% and R2Adj = 51.5% which are much lower.
c. For β7, a 95% confidence interval is 0.484 ± 2.064(.1192) = (−.198, .294) and for the mean number of games won by a team when x7 = 56.0 and x8 = 2100, a 95% confidence interval is 6.926 ± 2.064(.533) = (5.829,8.024). Both lengths are greater than when x2 was included in the model.
d. It can affect many things including the estimates and standard errors of the coefficients and the value of R2.
3.5 a.
= 32.9 − .053x1 + .959x6
b. Regression is significant.
c. R2 = 78.6% and R2Adj = 77.3%. For the simple linear regression with x1, R2 = 77.2%.
d. A 95% confidence interval for the slope parameter β1 is −.053 ± 2.045(.006145) = (−.0656, −.0405).
e. x1 is significant while x6 is not.
Coefficient test statistic p-value
β1 -8.66 0.000
β6 1.43 0.163
f. A 95% confidence interval on the mean gasoline mileage when x1...

Índice