Bobath Concept
eBook - ePub

Bobath Concept

Theory and Clinical Practice in Neurological Rehabilitation

Sue Raine, Linzi Meadows, Mary Lynch-Ellerington, Sue Raine, Linzi Meadows, Mary Lynch-Ellerington

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Bobath Concept

Theory and Clinical Practice in Neurological Rehabilitation

Sue Raine, Linzi Meadows, Mary Lynch-Ellerington, Sue Raine, Linzi Meadows, Mary Lynch-Ellerington

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Authored by members of the British Bobath Tutors Association, Bobath Concept: Theory and Clinical Practice in Neurological Rehabilitationis a practical illustrated guide that offers a detailed exploration of the theoretical underpinning and clinical interventions of the Bobath Concept.

The evolution of the Bobath concept is brilliantly captured in this volume. The recognition that the best inhibition may come from engaging the patient in normal activities is an example of the way one of the notions central to the original Bobath Concept has developed. In short, the Bobath Concept lies at the heart of an approach to neurorehabilitation that is ready to take advantage of the rapidly advancing understanding, coming from neuroscience, of brain function in, in particular, of the effects of and responses to damage, and the factors that may drive recovery. It is no coincidence that neuroplasticity figures so prominently in the pages that follow.'

Emeritus Professor Raymond Tallis BM BCh BA FRCP FMedSci LittD DLitt FRSA

This book guides the reader through general principles to more specific application of neurophysiological principles and movement re-education in the recovery of important areas, including moving between sitting and standing, locomotion and recovery of upper limb function.

Bobath Concept: Theory and Clinical Practice in Neurological Rehabilitationwill be invaluable to undergraduate and qualified physiotherapists /occupational therapists and all professionals working in neurological rehabilitation.

  • Covers the theoretical underpinning of the Bobath Concept.
  • Presents a holistic, 24-hour approach to functional recovery.
  • Focuses on efficient movement and motor learning, to maximise function.
  • Forges links between theory and clinical practice.
  • Illustrated throughout.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Bobath Concept un PDF/ePUB en línea?
Sí, puedes acceder a Bobath Concept de Sue Raine, Linzi Meadows, Mary Lynch-Ellerington, Sue Raine, Linzi Meadows, Mary Lynch-Ellerington en formato PDF o ePUB, así como a otros libros populares de Medicine y Physiotherapy, Physical Medicine & Rehabilitation. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2013
ISBN
9781118693339

1.

The Bobath Concept: Developments and Current Theoretical Underpinning

Sue Raine

Introduction

There are a number of neurological approaches used in the management of the patient following a neurological deficit. The Bobath Concept is one of the most commonly used of these approaches (Davidson & Walters 2000; Lennon 2003), and it offers therapists working in the field of neurological rehabilitation a framework for their clinical interventions (Raine 2006). This chapter will provide the reader with an overview of the Bobath Concept including the founders of the approach and its inception, the theoretical underpinning and its application into clinical practice.

The founders and development of the Bobath Concept

Karel Bobath was born in Berlin, Germany in 1906, and trained there as a medical doctor, graduating in 1936. Berta Ottilie Busse was also born in Berlin, in 1907. Her early training was as a remedial gymnast, where she developed her understanding of normal movement, exercise and relaxation (Schleichkorn 1992). They both fled Berlin in 1938 just before the Second World War. In London Mrs Bobath trained as a physiotherapist, graduating from the Chartered Society of Physiotherapy in 1950 (Schleichkorn 1992). Dr Bobath started his career working in paediatrics and later more specifically with children with cerebral palsy (Schleichkorn 1992).
Prior to the 1950s, conventional neurological rehabilitation had a strong orthopaedic bias, and promoted the use of massage, heat, passive and active movement techniques such as the use of pulleys, suspension and weights (Partridge et al. 1997). Splints and walking aids such as calipers and tripods were provided to enable the patient to function. Stroke sufferers at that time presented with the same stereotypical spastic patterning, with flexion of the upper limb and extension of the lower limb (Bobath 1970). The hemiparetic upper limb, a non-functional appendage, and the lower limb acting as a prop during ambulation.
In 1943 Mrs Bobath was asked to treat a famous portrait painter, who had suffered a stroke and was unhappy with conventional treatment (Schleichkorn 1992). Mrs Bobath focused her treatment on the affected side, basing her interventions on her knowledge of human movement and relaxation. She observed that with specific handling, tone was changeable and that there was potential for the recovery of movement and functional use of the affected side. Mrs Bobath continued to explore and further develop these early observations and techniques into principles of treatment. Mrs Bobath developed an assessment procedure that was unique and of great significance to the advancement of the physiotherapy profession, as it moved away from the medical prescription. Working in partnership with Mrs Bobath, Dr Bobath studied and applied the available neurophysiology at that time, to provide a rational explanation for the clinical success.
Together they created the Bobath Concept, a revolutionary approach which has continued to develop and help change the direction of neurorehabilitation. They described the Concept as hypothetical in nature, based on clinical observations, confirmed and strengthened by the available research (Schleichkorn 1992).
The neurophysiology available to Dr Bobath during the early years was based on animal experimentation (Bobath 1970). The evidence supported a hierarchical model with the emphasis on descending control from the cortex to the primitively organised spinal cord. The complexity of the nervous system was defined in terms of size and number of connections and was seen as being a number of hard-wired tracts with electrical activity running through them. Movement was thought to be elicited through the stimulation of reflexes in the spinal cord, with the primitive reflex patterning seen at birth refined during maturation, through inhibition from higher centres. Lesions to the pyramidal tract were found to produce a loss of inhibitory control and therefore contralateral spastic hemiplegia. Inhibition was therefore seen by Mrs Bobath as important in adapting motor behaviour, and her early clinical interventions demonstrated that it was possible to influence tone through afferent input (Bobath 1970, 1978). This led to the development of ‘reflex inhibiting postures’ and later the less static ‘reflex inhibiting patterns’, which used rotational movement components to fractionate the stereotypical patterns (Bobath 1990). Although the nervous system was thought to be irreparable, Mrs Bobath found changes in clinical presentation that demonstrated modification of the nervous system.
Mrs Bobath described, in 1990, that the main problem seen in patients was abnormal coordination of movement patterns combined with abnormal tonus, and that strength and activity of individual muscles were of secondary importance (Bobath 1990). Assessment and treatment of motor patterns was seen as key to functional use. Reflex inhibiting postures were discarded for greater emphasis on movement and function, with the patient taking an active role in their treatment. The best inhibition was seen as the patient’s own activity (Mayston 1992). The emphasis in treatment was on normalising tone and facilitating automatic and volitional movement through specific handling. Mrs Bobath felt it was important that treatment was not a structured set of exercises to be prescribed to all patients, but a wide variety of techniques that could be adapted and flexible to meet the individual’s changing needs (Schleichkorn 1992). Mrs Bobath advocated a 24-hour, holistic approach which involved the whole patient, their sensory, perceptual and adaptive behaviour as well as their motor problems (Bobath 1990). Although preparation was seen to be important, Mrs Bobath stressed that it had to directly translate into function.
The Bobath Concept was not exclusive but could be applied to all patients with a disorder of motor control, regardless of how severe their cognitive or physical deficits might be.
The Bobath Concept continued to develop throughout Dr and Mrs Bobath’s lifetime. In 1984 the Bobaths founded the International Bobath Instructors Training Association (IBITA 2007), an organisation that maintains the standards of teaching and developments of the Bobath Concept worldwide. Mrs Bobath stated that each therapist works differently according to their experiences and personality, but all can build treatment upon the same Concept (Schleichkorn 1992). Dr Bobath stated ‘the Bobath Concept is unfinished, we hope it will continue to grow and develop in years to come’ (Scheichkorn 1992; Raine 2006).
In conjunction with the growth of knowledge in areas of neuroscience and the evaluation of clinical practice, there have been ongoing developments in both the theoretical underpinning of the Bobath Concept and its clinical application (Raine 2007; Gjelsvik 2008).

Current theory underpinning the Bobath Concept

Advances in clinical techniques and technical resources over the last decade have provided therapists with increased evidence in the fields of neuroscience, biomechanics and motor learning (Royal College of Physicians 2004). These developments deepen the understanding of human movement and the impact of pathology, helping to guide therapists in their clinical interventions to maximise the patient’s functional outcome. There is strong evidence to support the effect of rehabilitation in terms of improved functional independence and reduced mortality (Royal College of Physicians 2004); however, there has been insufficient evidence to identify if any one therapy approach is better than another. Research that has been designed to evaluate effectiveness of individual neurorehabilitation approaches has been fraught with methodological difficulties (Paci 2003; Luke et al. 2004).
The contemporary Bobath Concept is a problem-solving approach to the assessment and treatment of individuals with disturbances of function, movement and postural control due to a lesion of the central nervous system (CNS), and can be applied to individuals of all ages and all degrees of physical and functional disability (Raine 2006; IBITA 2007). The theory underpinning the Bobath Concept considers an approach to motor control that encompasses not only important key features about the individual but also how they interact in the world around them. The ability of the individual to plastically adapt and learn from new challenges enabling them to refine their motor behaviour is the basis by which patients have the potential to recover following injury. Motor learning theories provide the principles that guide and enhance the physiological modifications which support refinements in movement to change functional performance over time. In order to optimise motor learning and recovery in patients with neurological dysfunction, it is essential to have an understanding of how a lesion of the upper motor neuron (UMN) will impact on the individual and their motor control.

Systems approach to motor control

The systems approach to motor control provides the foundation of the current theoretical underpinning of the Bobath Concept (Raine 2006). The systems theory is based on the work of Bernstein (1967). Bernstein recognised that it was important to have an understanding of the characteristics of the movement system, and the external and internal forces acting on the body, in order to develop an understanding of the neural control of movement. From a biomechanical viewpoint, he considered the many degrees of freedom provided by the numerous joints within the body and the control needed to enable them to work together as a functional unit.
Bernstein considered the control of integrated movement to be distributed throughout many interacting systems working cooperatively. He stated that ‘coordination of movement is the process of mastering the redundant degrees of freedom of the moving organism’, recognising the importance of stability and control in movement. He described how muscles could work in synergies to help solve this movement problem, such as in postural control and locomotion.
Shumway-Cook and Woollacott (2007) expand Bernstein’s theory to describe the systems approach, emphasising like Mrs Bobath, that human motor behaviour is based upon a continuous interaction between the individual, the task and the environment. They describe movement as resulting from a dynamic interplay between perception, cognition and action systems, and highlight the CNS’s ability to receive, integrate and respond to the environment to achieve a motor goal (Brooks 1986). Many systems and subsystems work cooperatively for the integration of movement into function. They work both hierarchically by means of ascending pathways and through parallel distributed processing where many brain structures are processing the same information simultaneously (Kandel et al. 2000). The nervous system uses a shifting focus of control depending on many biomechanical, neuroanatomical and environmental influences.
It is the systems approach theory to motor control which forms the foundation for the underlying principles of assessment and treatment encompassed within the contemporary Bobath Concept (Raine 2007). The Concept considers that motor control is based on a nervous system working with both hierarchical and parallel distributive, multi-level processing amongst many systems and subsystems involving multiple inputs, and with modulation on a number of levels within this processing. It sees the potential for plasticity as the basis of development, learning and recovery within the nervous and muscular systems.

Plasticity

Neuroplasticity

The plasticity of a structure is its ability to show modification or change. Motor learning is the permanent change in an individual’s motor performance brought about as a result of practice (Wishart et al. 2000; Lehto et al. 2001). The structures undergoing modification which need to be considered during motor learning are neural plasticity and muscular plasticity. The capacity of the nervous system to change is demonstrated in children during the development of neural circuits, and in the adult brain, during the learning of new skills, establishment of new memories, and by responding to injury throughout life (Purves et al. 2004).
Modification in neural function in maturity appears to rely primarily on carefully regulated changes in the strength of existing synapses (Kandel et al. 2000). Learning an activity is synapse and circuit specific, and can be modified with synaptic transmission being either facilitated (strengthened) or depressed (weakened). These short-term changes in the efficacy of synapse transmission are due to modification of existing synaptic proteins which may last up to a minute (Purves et al. 2001; Calford 2002). For motor learning to occur these short-term changes need to be reinforced to promote more significant cellular and molecular modifications (Calford 2002).
Changes lasting days, weeks, months and even years, demonstrating carry-over in a motor performance and learning, require the synthesis of new proteins and changes in gene expression, which directs change in synaptic circuitry and localised formation of new axon terminals and dendritic processes. These structural modifications can strengthen the synapse by long-term potentiation or can weaken the synapse by long-term depression (Calford 2002). It is the strengthening of some synapses, and circuits, over others which enables refinement of a motor skill or performance to allow carry-over from one day to the next.
The nervous system and neuromuscular system can adapt and change their structural organisation in response to both intrinsic and extrinsic information. The manipulation of this information can directly effect a change in the structural organisation of the nervous system through spatial and temporal summation and the facilitation of pre- and post-synaptic inhibition. If two or more stimuli are presented and then reinforced together, associative learning can occur. This enables relationships in stimuli to be predicted and can link two aspects of motor behaviour occurring at the same time, such as hip and knee extension through stance phase in gait. Neuronal cortical connections are strengthened and remodelled by our experiences; this means that ‘neurons that fire together, wire together’ and promote motor learning (Hebb 1949; Johansson 2003). There is a direct relationship between the neural molecular form and functional performance (Kidd et al. 1992). The nervous system is continually undergoing modification based upon its experiences, and it is these modifications which then support its role in achieving efficient and effective functional goals in a variety of environments.

Neuroplastic changes following injury

Any acquired brain injury will result in subsequent neuronal cell death, interruption of their axonal projections and potential cascade of degeneration to communicating neurons (diaschesis) (Cohen 1999; Enager 2004). The impact the lesion has on motor control and function will depend upon the location and the size of the lesion. The model of neuroplasticity provides evidence that the brain will respond to injury by reorganisation and adaptation aimed at restoring function (Stephenson 1993; Nudo 2007). There are three neuroplastic phenomena that occur in the nervous system following a lesion which facilitate structural and functional reorganisation (Bishop 1982; Kidd et al. 1992). These include denervation supersensitivity, collateral sprouting and unmasking of silent (latent) synapses.
Denervation supersensitivity occurs when there is a loss of input from other brain regions. An increased release of transmitter substance causes a heightened response to stimulation (Wainberg 1988; Schwartzkroin 2001). Post-synaptic target neurons become hypersensitive to the transmitter substance, increasing the number of receptor sites. Collateral sprouting appears in cells around the lesion, where collateral dendrites make connections with those synapses lost by cell necrosis (Darian-Smith & Gilbert 1994). Unmasking of silent synapses occurs when previous non-functioning neurons are accessed to form new connections (Nudo 1998; Johansson 2000). There has been increasing work demonstrating regeneration within the nervous system (Nudo 1998; Johansson 2000). Changes within the structure of the nervous system can be organised or disorganised producing adaptive or maladaptive sensorimotor behaviour, which can promote or be detrimental to recovery (Nudo & Friel 1999; Nudo 2007).

Cortical plasticity

Cortical representation areas have been found to be modified by sensory input, experience and learning, as well as in response to brain injury (Bruehlmeier et al. 1998; Nudo 2007).
Cortical changes following injury include the loss of specific sensorimotor functional representation with direct physical and functional consequences. Although not totally reversible, there have been numerous findings demonstrating cortical plasticity and remapping following a cortical lesion. Where representation of an area has not totally been lost, the representation of the peri-infarct tissue and areas in axonal communication with the lesioned area, through axonal sprouting, have been found to take on representation and therefore function of the lesioned area (Rapisarda et al. 1996; Cramer et al. 1997). Reorganisation has been seen in areas of the visual cortex which becomes associated with tactile tasks in blind subjects who read Braille (Sadato et al. 2004).
Changes seen following peripheral lesions are based on the cortical response to changing input which can either be upgraded or downgraded, such as remapping in subjects following amputation or selective anaesthesia, where there is a reduced representation of the affected area and an increase of representation of adjacent areas within the cortex (Merzenich & Jenkins 1993; Yang et al. 1994). The Bobath Concept explores this potential for cortical reorganisation through selective afferent input to optimise internal representation and influence movement control. Selective motor training or manipulation of the task, environment, or aspects of the individual as part of movement re-education also aims to promote plastic changes. This has been seen in the cortical representation of the left hand, in a left handed string instrument player which when scanned shows greater cortical representation compared with the left hand of a non-string player (Elbert et al. 1995). Enriched environments giving subjects greater than normal stimulation have been shown, at the right time, to promote significant neuroplastic changes and improvement in functional outcomes (Ohlsson & Johansson 1995; Johansson 1996).
Emergent properties of each cortical area are constantly shaped by behavioural demands, driven largely by repetition and temporal coincidence (Nudo 2007). Bernstein (1967) describes the importance of not just repetitio...

Índice