A Course on Group Theory
eBook - ePub

A Course on Group Theory

John S. Rose

Compartir libro
  1. 320 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

A Course on Group Theory

John S. Rose

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

This textbook for advanced courses in group theory focuses on finite groups, with emphasis on the idea of group actions. Early chapters summarize presupposed facts, identify important themes, and establish the notation used throughout the book. Subsequent chapters explore the normal and arithmetical structures of groups as well as applications.
Topics include the normal structure of groups: subgroups; homomorphisms and quotients; series; direct products and the structure of finitely generated Abelian groups; and group action on groups. Additional subjects range from the arithmetical structure of groups to classical notions of transfer and splitting by means of group action arguments. More than 675 exercises, many accompanied by hints, illustrate and extend the material.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es A Course on Group Theory un PDF/ePUB en línea?
Sí, puedes acceder a A Course on Group Theory de John S. Rose en formato PDF o ePUB, así como a otros libros populares de Mathematics y Group Theory. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2013
ISBN
9780486170664
Categoría
Mathematics
Categoría
Group Theory

1

INTRODUCTION TO FINITE GROUP THEORY

The ideal aim of finite group theory is to ‘find’ all finite groups: that is, to show how to construct finite groups of every possible type, and to establish effective procedures which will determine whether two given finite groups are of the same type. The attainment of this ideal is of course quite beyond the reach of present techniques (though the corresponding aim for finite abelian groups was achieved a hundred years ago: see 8.24, 8.41). But what kind of programme might be devised towards the fulfilment of such an aim?
To each finite group G there is associated the positive integer | G|. We note two elementary facts.
1.1. For each positive integer n, there is at least one type of group of order n.
For instance, the set of complex nth roots of unity forms a (cyclic) group of order n under multiplication: see 2.14.
1.2. For each positive integer n, there are only finitely many different types of groups of order n.
To see this we observe that for any group G of order n and any set X of n elements, X can be given the structure of a group isomorphic to G. All that is needed is to choose some bijective map
image
: GX and then to define multiplication in X by the rule (g1
image
)(g2
image
) = (g1g2)
image
for all g1, g2G. It is straightforward to check that this multiplication on X satisfies the group axioms; then also, by definition,
image
becomes an isomorphism. This means that groups of order n of all possible types appear among all possible assignments of a binary operation to any particular set of n elements. But the number of different such assignments is
image
, and so this is also an upper bound for the number of types of groups of order n.
(For another proof of 1.2, see 4.24.) For each positive integer n, let v(n) denote the number of types of groups of order n. Very little is known about v(n) in general (see 301 for a sharper upper bound on v(n)); but one simple remark can be made immediately. It follows from Lagrange’s theorem that a group of prime order must be cyclic (1). Since any two cyclic groups of the same order are isomorphic (2), we have
1.3. For each prime number p, v(p) = 1.
There are numbers n other than primes for which v(n) = 1. We mention a result which characterizes these numbers – though the result is not of importance in group theory, but merely a curiosity (see 575).
1.4. Let
image
, where s
, m1,…, ms are positive integers and p1,…, ps distinct primes. Then v(n) = 1 if and only if m1 = m2 = … = ms = 1 and for all i,j = 1,…, s, pi − 1 is not divisible by pj.
(Thus for example v(15) = 1; see 215.)
Now, for each positive integer n, let va(n) denote the number of types of abelian groups of order n: then va(n)
image
v(n). From theorems on the structure of finite abelian groups (see 8.43), we have
1.5. Let
image
, where s
,m1,…,ms are positive integers and p1,…,ps distinct primes. Then
image
and, for each j = 1,…, s,
image
is the number of partitions of mj; that is, the number of ways of expressing mj as a sum of positive integers (the order of components being disregarded). In particular,
image
.
This shows that there is no upper bound for va(n) which is independent of n; and hence also no upper bound for v(n) in...

Índice