A Concise Introduction to Numerical Analysis
eBook - ePub

A Concise Introduction to Numerical Analysis

A. C. Faul

Compartir libro
  1. 292 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

A Concise Introduction to Numerical Analysis

A. C. Faul

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics.Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading.The book uses MATLAB ® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book's page at www.crcpress.com.Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book's page at www.crcpress.com.This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es A Concise Introduction to Numerical Analysis un PDF/ePUB en línea?
Sí, puedes acceder a A Concise Introduction to Numerical Analysis de A. C. Faul en formato PDF o ePUB, así como a otros libros populares de Matematica y Matematica generale. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2018
ISBN
9781498712217
Edición
1
Categoría
Matematica
CHAPTER 1
Fundamentals
1.1 Floating Point Arithmetic
We live in a continuous world with infinitely many real numbers. However, a computer has only a finite number of bits. This requires an approximate representation. In the past, several different representations of real numbers have been suggested, but now the most widely used by far is the floating point representation. Each floating point representations has a base β (which is always assumed to be even) which is typically 2 (binary), 8 (octal), 10 (decimal), or 16 (hexadecimal), and a precision p which is the number of digits (of base β) held in a floating point number. For example, if β = 10 and p = 5, the number 0.1 is represented as 1.0000 × 10−1. On the other hand, if β = 2 and p = 20, the decimal number 0.1 cannot be represented exactly but is approximately 1.1001100110011001100 × 2−4. We can write the representation as ±d0.d1dp − 1 × βe, where d0.d1dp − 1 is called the significand (or mantissa) and has p digits and e is the exponent. If the leading digit d0 is non-zero, the number is said to be normalized. More precisely ±d0.d1dp − 1 × βe is the number
±(d0+d1β1+d2β2++dp1β(p1))βe,0di<β.
If the exponents of two floating point numbers are the same, they are said to be of the same magnitude. Let’s look at two floating point numbers of the same magnitude which also have the same digits apart from the digit in position p, which has index p − 1. We assume that they only differ by one in that digit. These floating point numbers are neighbours in the representation and differ by
1×β(p1)×βe=βep+1.
Thus, if the exponent is large the difference between neighbouring floating point numbers is large, while if the exponent is small the difference between neighbouring floating point numbers is small. This means floating point numbers are more dense around zero.
As an example consider the decimal number 3.141592, the first seven digits of π. Converting this into binary, we could approximate it by
1.1001001000011111101011111100100011×21=(1+1*12+0*14+0*18+1*116+0*132+0*164+)*213.14159200003.
If we omit the last digit we arrive at
1.100100100001111110101111110010001×213.14159199991.
Looking at the conversion to a hexadecimal representation, we get the approximation
3.243F5F92=3+2*116+4*1162+3*1163+15*1164+5*1165+3.14159200001.
Omi...

Índice