Compendium of Hydrogen Energy
eBook - ePub

Compendium of Hydrogen Energy

Hydrogen Storage, Distribution and Infrastructure

Ram Gupta, Angelo Basile, T. Nejat Veziroglu, Ram Gupta, Angelo Basile, T. Nejat Veziroglu

Compartir libro
  1. 438 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Compendium of Hydrogen Energy

Hydrogen Storage, Distribution and Infrastructure

Ram Gupta, Angelo Basile, T. Nejat Veziroglu, Ram Gupta, Angelo Basile, T. Nejat Veziroglu

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Compendium of Hydrogen Energy, Volume 2: Hydrogen Storage, Distribution and Infrastructure focuses on the storage and transmission of hydrogen. As many experts believe the hydrogen economy will, at some point, replace the fossil fuel economy as the primary source of the world's energy, this book details hydrogen storage in pure form, including chapters on hydrogen liquefaction, slush production, as well as underground and pipeline storage.

Other sections in the book explore physical and chemical storage, including environmentally sustainable methods of hydrogen production from water, with final chapters dedicated to hydrogen distribution and infrastructure.

  • Covers a wide array of methods for storing hydrogen, detailing hydrogen transport and the infrastructure required for transition to the hydrogen economy
  • Written by leading academics in the fields of sustainable energy and experts from the world of industry
  • Part of a very comprehensive compendium which looks at the entirety of the hydrogen energy economy

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Compendium of Hydrogen Energy un PDF/ePUB en línea?
Sí, puedes acceder a Compendium of Hydrogen Energy de Ram Gupta, Angelo Basile, T. Nejat Veziroglu, Ram Gupta, Angelo Basile, T. Nejat Veziroglu en formato PDF o ePUB, así como a otros libros populares de Tecnología e ingeniería y Recursos de energía renovable. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Part One
Hydrogen storage in pure form
1

Introduction to hydrogen storage

N.T. Stetson1; S. McWhorter2; C.C. Ahn3 1 U.S. Department of Energy, Washington, DC, USA
2 Savannah River National Laboratory, Aiken, SC, USA
3 California Institute of Technology, Pasadena, CA, USA

Abstract

Hydrogen can be used as an efficient and sustainable energy source to produce power while minimizing local greenhouse gas emissions. Hydrogen has about three times the energy by mass compared to most hydrocarbon liquid fuels, but given its low density, it has low energy by volume. Therefore, the storage of hydrogen at high volumetric density is considered a critical enabling technology for the successful commercialization of hydrogen-based energy applications. Hydrogen may be stored in physical form under high pressure at ambient or subambient temperatures, or as a cryogenic liquid near its normal boiling point of 20 K. Additionally, hydrogen may be stored as a solution in metals, bonded to other elements as in hydrogen compounds or adsorbed as the diatomic molecule in porous solids.
Keywords
Compressed hydrogen
Cryo-compressed hydrogen
Cold-compressed hydrogen
Metal hydrides
Chemical hydrogen storage materials
Adsorbents
Abbreviations
ΔH enthalpy of reaction
ΔS entropy of reaction
AGA American Gas Association
ANSI American National Standards Institute
CF carbon fiber
DOE Department of Energy
HHV higher heating value
ISO International Organization for Standardization
KHK Kouatsu-Gas Hoan Kyoukai (High Pressure Gas Safety Institute of Japan)
LHV lower heating value
LLNL Lawrence Livermore National Laboratory
MHx metal hydrides
MLI multilayer insulation
mpg miles per gallon
NASA National Aeronautics and Space Administration
NGV2 American National Standard for Natural Gas Vehicle Containers
PEM polymer electrolyte membrane
R gas constant
SAE Society of Automotive Engineers
STP standard temperature and pressure (273.15 K, 0.100 MPa)
TUV Technischer Überwachungsverrein

1.1 Introduction

There is significant interest in the use of hydrogen as an energy carrier. Since the 1990s this interest has been driven by geo-political and climate change concerns as well as advancements in technology. For instance, the United States imported over four billion barrels of crude oil and petroleum products annually from 2000 to 2011, exceeding five billion barrels in each of 2005 and 2006 (U.S. Imports of Crude Oil and Petroleum Products, 2014). With the price of crude oil ranging up to over $100 per barrel, these import rates resulted in expenditures of up to US$1 billion per day being sent to foreign entities to import nondomestic oil. During this timeframe there was also increasing evidence that the use of fossil fuels and the incumbent release and accumulation of carbon dioxide and other greenhouse gases in the atmosphere was causing significant climate change. Therefore, development of clean, sustainable sources of energy that are widely available throughout the world was considered a high priority. An example was in 2003 when US President George W. Bush announced the “Hydrogen Fuel Initiative” to invest US$1.2 billion in research and development to make hydrogen competitive for powering vehicles and generating electricity (Selected Speeches of President George W. Bush, 2001–2008).
Advances in polymer electrolyte membrane (PEM) fuel cell technology have also contributed to the interest in use of hydrogen as an energy carrier. The generation of electricity from hydrogen and oxygen through fuel cell technology was first demonstrated in 1838 by William Robert Grove (Fuel Cell History Project, 2015). In the 1960s General Electric invented ion-exchange membrane fuel cells that were successfully used on seven of NASA's Gemini space missions in 1965 and 1966 (Warshay and Prokopius, 1989). Later space missions, such as the Apollo and Space Shuttle programs, used alkaline fuel cells instead of ion-exchange membrane fuel cell technology due to performance issues and the high amounts of platinum catalyst that were used in ion-exchange fuel cells. Throughout the 1990s developments to improve power density while lowering the required amount of platinum catalysts, particularly at Los Alamos National Laboratory and Ballard Power Systems, spurred renewed interest in PEM fuel cells for automotive propulsion and other power applications (Koppel, 1999). Fuel cells can provide several benefits compared to conventional power sources. When hydrogen is used directly as the fuel, the reaction product is water, thus no greenhouse gases are produced at the point of use. The chemical to electrical energy conversion efficiency of complete automotive PEM fuel cell systems have been shown to approach 60%, significantly higher than for devices such as internal combustion engines (Wipke et al., 2012). Higher total efficiencies can be realized in combined heat and power applications when both the electrical and heat energy are utilized.
PEM and alkaline fuel cells operate at relatively low temperatures, making them more suitable for applications that undergo frequent on/off cycles and require quick start-up, such as mobile, portable, and back-up power. Power requirements for these applications can range from as low as a watt or so for portable applications (e.g., portable electronics) up to about 100 kW or so for mobile applications (e.g., passenger cars and buses). Many of these applications are currently in the domain of battery systems. Hydrogen fuel cell systems have both advantages and disadvantages when compared with battery systems. Typical batteries are redox systems with an oxidant and a reduct...

Índice