Biology of Disease Vectors
eBook - ePub

Biology of Disease Vectors

William H. Marquardt, William H. Marquardt

Compartir libro
  1. 816 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Biology of Disease Vectors

William H. Marquardt, William H. Marquardt

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Biology of Disease Vectors presents a comprehensive and advanced discussion of disease vectors and what the future may hold for their control. This edition examines the control of disease vectors through topics such as general biological requirements of vectors, epidemiology, physiology and molecular biology, genetics, principles of control and insecticide resistance. Methods of maintaining vectors in the laboratory are also described in detail.No other single volume includes both basic information on vectors, as well as chapters on cutting-edge topics, authored by the leading experts in the field. The first edition of Biology of Disease Vectors was a landmark text, and this edition promises to have even more impact as a reference for current thought and techniques in vector biology.Current - each chapter represents the present state of knowledge in the subject areaAuthoritative - authors include leading researchers in the fieldComplete - provides both independent investigator and the student with a single reference volume which adopts an explicitly evolutionary viewpoint throuoghout all chapters. Useful - conceptual frameworks for all subject areas include crucial information needed for application to difficult problems of controlling vector-borne diseases

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Biology of Disease Vectors un PDF/ePUB en línea?
Sí, puedes acceder a Biology of Disease Vectors de William H. Marquardt, William H. Marquardt en formato PDF o ePUB, así como a otros libros populares de Scienze biologiche y Entomologia. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2004
ISBN
9780080494067
Edición
2
Categoría
Entomologia
PART I
INTRODUCTION AND VECTORS
CHAPTER 1 The Arthropods
BORIS C. KONDRATIEFF, WILLIAM C. BLACK, IV

INTRODUCTION

Arthropods, the joint-footed animals, are a highly successful group of animals unrivaled by any others in diversity of structure and function. As a group they first appeared from the Precambrian to the Cambrian divisions of earth’s history, and they have radiated into unsurpassed lineages, both extinct and extant. Arthropods occur practically everywhere and have adapted to nearly every imaginable source of food, including vertebrate blood.
Arthropods are notable for having a segmental body plan made up of chitinous exoskeletal plates separated by less hardened membranous areas. Paired segmental appendages are usually present on at least some body segments. Additionally, important distinguishing characters include a ventral chain of segmental ganglia, an open circulatory system, and a body cavity that is a hemocoel. Most arthropods ventilate by means of a tracheal system and have well-developed appendicular mouthparts.
Extant arthropods include the chelicerates, crustaceans, myriapods, and insects. The distinctions among these groups are based largely on the manner in which the different segments are grouped together to form compact and distinct parts of the body and on the number and position of the appendages (Fig. 1.1). Two of these groups, the chelicerates (represented by mites, ticks, scorpions, and relatives) and the insects, include many important vector taxa; these are discussed in detail.
image
FIGURE 1.1 Representatives of the major groups of arthropods.

THE CHELICERATA

This diverse group of arthropods is characterized by possessing chelicerae and pedipalpi, lacking antennae, and having four pairs of legs as adults and a cephalothorax and abdomen. The class Arachnida constitutes the largest and most important class of Chelicerata, with nearly 70,000 species worldwide. Most authorities recognize at least 11 major groups of arachnids, but with much disagreement on names for the groups. The most important arachnid groups that may affect human health directly or indirectly are the acarines and ticks (Chapters 3 and 4).

THE INSECTS (HEXAPODA)

The 31 extant hexapoda orders (Table 1.1) (following Borror et al. 1989) include some of the most unique and spectacular animals on earth. About 1 million species have been described, and there have been estimates of as high as 8 million total species existing on our planet. The impact of insects on the “speciescape” (Wheeler 1990) is immense. Their high species richness has been attributed to their small size, their short generation time, their rather sophisticated nervous system, their coevolution with plants, their ability to fly, and their different development strategies.
TABLE 1.1 Outline of the Hexapoda (following Borror et al. 1989)
Entognatha
1. Protura (Myrientomata)—proturans
2. Collembola (Oligentomata)—springtails
3. Diplura (Entognatha, Entotrophi, Aptera)—diplurans
Insecta
4. Microcoryphia (Archaeognatha; Thysanura, Ectognatha, and Ectotrophi in part)—bristletails
5. Thysanura (Ectognatha, Ectotrophi, Zygentoma)—silverfish, firebrats
Pterygota —winged and secondarily wingless insects
6. Ephemeroptera (Ephemerida, Plectoptera)—mayflies
7. Odonata—dragonflies and damselflies
8. Grylloblattaria (Grylloblattodea, Notoptera)—rock crawlers
9. Phasmida (Phasmatida, Phasmatoptera, Phasmatodea, Cheleutoptera; Orthoptera in part)—walkingsticks and timemas
10. Orthoptera (Saltatoria, including Grylloptera)—grasshoppers and crickets
11. Mantodea (Orthoptera, Dictyoptera, Dictuoptera in part)— mantids
12. Blattaria (Blattodea; Orthoptera, Dictyoptera, Dictuoptera in part)—cockroaches
13. Isoptera (Dictyoptera, Dictuoptera in part)—termites
14. Dermaptera (Euplexoptera)—earwigs
15. Embiidina (Embioptera)—webspinners
16. Plecoptera—stone flies
17. Zoraptera—zorapterans
18. Psocoptera (Corrodentia)—psocids
19. Phthiraptera (Mallophaga, Anoplura, Siphunculata)—lice
20. Heteroptera (Hemiptera)—bugs
21. Homoptera (Hemiptera in part)—cicadas, hoppers, psyllids, whiteflies, aphids, and scale insects
22. Thysanoptera (Physapoda)—thrips
23. Neuroptera (including Megaloptera and Raphidiodea)— alderflies, dobsonflies, fishflies, snakeflies, lacewings, antlions, and owlflies
24. Coleoptera—beetles
25. Strepsiptera (Coleoptera in part)—twisted-wing parasites
26. Mecoptera (including Neomecoptera)—scorpion flies
27. Siphonaptera—fleas
28. Diptera—flies
29. Trichoptera—caddisflies
30. Lepidoptera (including Zeugloptera)—butterflies and moths
31. Hymenoptera—sawflies, ichneumonids, chalcids, ants, wasps, and bees
As a group, hexapods are recognized by three main body regions (head, thorax, abdomen), three pairs of legs (restricted to the thorax), and one pair of antennae (Fig. 1.2). Adult insects normally have wings, but there are groups of primitively wingless insects and many groups that have secondarily lost wings. Within the hexapods, three major kinds of developmental patterns are recognized. The noninsect hexapods, or Entognatha (Protura, Diplura, Collembola), and the Microcoryphia and Thysanura (Table 1.1) develop to adulthood with little change in body form (ametaboly), except for sexual maturation (Fig. 1.3). All other insects have either gradual change in body form (hemimetaboly) or a pronounced change from a simplified wingless immature stage to usually a winged adult stage via a pupal stage (holometaboly) (Fig. 1.3).
image
FIGURE 1.2 The external anatomy of a generalized insect.
From William S. Romoser and John G. Stoffolano, Jr., The Science of Entomology. Copyright © 1994 Wm. C. Brown Communications, Inc., Dubuque, Iowa. All rights reserved. Reprinted by permission.
image
FIGURE 1.3 Patterns of development in insects.
From Clyde F. Herried, Biology. Copyright © 1977 Macmillan Publishing Company, Inc. Reprinted with permission of Simon & Schuster.
Families of four orders of insects (Heteroptera, Phthiraptera, Siphonaptera, and Diptera) are covered in succeeding chapters (Chapters 513) that contain representatives affecting human health directly or indirectly.
Readings
Borror D.J., Triplehorn C.A., Johnson N.F. An Introduction to the Study of the Insects, 6th ed. Philadelphia: Saunders, 1989.
Wheeler Q.D. Insect diversity and cladistic constraints. Ann. Entomol. Soc. Amer. 1990;83:1031–1047.
CHAPTER 2 Evolution of Arthropod Disease Vectors
WILLIAM C. BLACK, IV , BORIS C. KONDRATIEFF

INTRODUCTION

Fossils resembling arthropods first appeared during the late Proterozoic era, about 600 to 540 million years ago. Today the phylum Arthropoda contains ∼80% of all extant, metazoan animal species, and they have come to occupy virtually every marine, freshwater, terrestrial, and aerial habitat on earth. Arthropods are essential components of most of the major food chains. In many ecosystems arthropods consume and recycle detritus and the associated bacteria, algae, and fungi. Many species consume either the living or dead tissues of terrestrial and aquatic plants and animals, others are voracious predators or parasites. Given this huge taxonomic and ecological diversity, it is not surprising that some arthropods have evolved the ability to utilize a rich and abundant source of nutrients, the blood of vertebrates.
By plotting the occurrences of hematophagy (the habit of feeding on blood) (Fig. 2.1, solid circles) on the current phylogenetic hypothesis for arthropods (Wheeler et al. 2001), we can see that blood feeding has evolved independently at least 21 times in disparate arthropod taxa. Within the single insect Order Diptera, hematophagy has probably evolved independently in nine families. There is no evidence of monophyly among hematophagous fly species in the family Muscidae, and it is likely that blood feeding arose at least four additional times in this family.
image
FIGURE 2.1 Current hypothesis of phylogenetic relationships among ancestral and extant arthropod groups. Phylogenetic relationships among hexapod orders is based upon Wheeler et al. (2001), relationships among Chelicerata is based upon Wheeler and Hayashi (1998) and Weygoldt (1998), and relationships among the Acari is based upon Lindquist (1984). The evolution of a hematophagous taxon is indicated with a solid circle. Repres...

Índice