Círculos matemáticos
  1. 353 páginas
  2. Spanish
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Descripción del libro

Con la idea de que pensar y discutir sobre problemas matemáticos podría generar el mismo entusiasmo que practicar un deporte en equipo, en la antigua Unión Soviética surgió el singular movimiento cultural de los CÍRCULOS MATEMÁTICOS, que dejó tras de sí un intenso rastro de problemas, enfoques y textos. CÍRCULOS MATEMÁTICOS recoge parte de aquella emocionante experiencia.Es un libro de divulgación matemática dirigido a todos aquellos que sienta curiosidad por el juego mental que implican las matemáticas y que deseen indagar en sus ramas menos conocidas. También es un libro ideal para estudiantes que quieran salir de los límites del curriculum escolar, y para profesores que deseen proponer retos matemáticos interesantes pero que no requieran técnicas complicadas para resolverse.

Preguntas frecuentes

Sí, puedes cancelar tu suscripción en cualquier momento desde la pestaña Suscripción en los ajustes de tu cuenta en el sitio web de Perlego. La suscripción seguirá activa hasta que finalice el periodo de facturación actual. Descubre cómo cancelar tu suscripción.
Por el momento, todos los libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
Perlego ofrece dos planes: Esencial y Avanzado
  • Esencial es ideal para estudiantes y profesionales que disfrutan explorando una amplia variedad de materias. Accede a la Biblioteca Esencial con más de 800.000 títulos de confianza y best-sellers en negocios, crecimiento personal y humanidades. Incluye lectura ilimitada y voz estándar de lectura en voz alta.
  • Avanzado: Perfecto para estudiantes avanzados e investigadores que necesitan acceso completo e ilimitado. Desbloquea más de 1,4 millones de libros en cientos de materias, incluidos títulos académicos y especializados. El plan Avanzado también incluye funciones avanzadas como Premium Read Aloud y Research Assistant.
Ambos planes están disponibles con ciclos de facturación mensual, cada cuatro meses o anual.
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¡Sí! Puedes usar la app de Perlego tanto en dispositivos iOS como Android para leer en cualquier momento, en cualquier lugar, incluso sin conexión. Perfecto para desplazamientos o cuando estás en movimiento.
Ten en cuenta que no podemos dar soporte a dispositivos con iOS 13 o Android 7 o versiones anteriores. Aprende más sobre el uso de la app.
Sí, puedes acceder a Círculos matemáticos de Dmitry Fomin,Sergey Genkin,Ilia Itenberg, Enrique Hernando Arnáiz en formato PDF o ePUB, así como a otros libros populares de Mathématiques y Mathématiques générales. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2015
ISBN de la versión impresa
9788467552270
ISBN del libro electrónico
9788467589092
Categoría
Mathématiques
Parte 2. El segundo año
Capítulo 9
Inducción
I. S. Rubanov
§ 1. Los procesos inductivos y el método de inducción
Introducción para los profesores. ¿Quién no ha jugado alguna vez a colocar fichas de dominó en una fila y hacer que caigan en cadena? Empujamos la primera ficha y esta derriba a la segunda, la segunda derriba entonces a la tercera y así sucesivamente hasta que caen todas. Sustituyamos ahora las fichas de dominó por una serie infinita de proposiciones (P1, P2, P3, …) numeradas con los enteros positivos.
Supongamos que podemos demostrar que:
(B): la primera proposición de la serie es verdadera.
(S): La veracidad de cada proposición de la serie implica la veracidad de la siguiente.
Entonces habríamos demostrado, de hecho, todas las proposiciones de la serie. En efecto, si “empujamos la primera ficha de dominó”, es decir, probamos la primera afirmación (B), entonces el enunciado (S) significará que cada “ficha” (proposición), al caer (ser demostrada), derribará a (implica la veracidad de) la siguiente. Cualquier proposición que elijamos de antemano será probada eventualmente al ser alcanzada por esta onda de demostraciones.
Acabamos de hacer una descripción del método de inducción matemática. La afirmación (B) es la “base de inducción” y la (S) es el “paso de inducción”. Nuestro razonamiento con la sucesión de fichas de dominó cayendo demuestra que el paso (S) no es más que una forma compacta de representar la cadena de teoremas que mostramos abajo:
P1 P2 P3 Pk Pk + 1
Llamaremos a los teoremas de esta sucesión “pasos”, y al proceso que consiste en demostrarlos secuencialmente, “el proceso de inducción”. Podemos representar este proceso visualmente como una sucesión de demostraciones que van avanzando de cada proposición a la siguiente a lo largo de una cadena de teoremas.
La esencia del método de inducción consiste precisamente en este proceso. Podemos preguntarnos entonces cómo podemos transmitir esta idea a los alumnos. Intentaremos mostrarlo simulando un diálogo entre un profesor (P) y un estudiante (E), que bien podría representar una sesión de uno de nuestros círculos matemáticos. Al final del diálogo propondremos algunos comentarios metodológicos para el profesor (las referencias numeradas a esos comentarios aparecen indicadas entre paréntesis en el propio texto del diálogo).
Problema 1. P: Recortamos un cuadrado de 16 × 16 de una hoja de papel cuadriculado y le quitamos una casilla cualquiera. Demuestra que la figura así obtenida puede ser recubierta sin solapamientos por triminós como el que se muestra en la figu...

Índice

  1. Portadilla
  2. Prefacio
  3. Prólogo a la Edición Rusa
  4. Parte I. El primer año
  5. Parte 2. El segundo año
  6. Apéndice A Concursos de matemáticas
  7. Apéndice B Respuestas y soluciones
  8. Apéndice C Bibliografía
  9. Créditos