Issac Newton
eBook - ePub

Issac Newton

A Biography

Estefania Wenger

Compartir libro
  1. 86 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Issac Newton

A Biography

Estefania Wenger

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Sir Isaac Newton was an English mathematician, astronomer, and physicist who is widely recognised as one of the most influential scientists of all time and a key figure in the scientific revolution. This book gives an account of his life and theories.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Issac Newton un PDF/ePUB en línea?
Sí, puedes acceder a Issac Newton de Estefania Wenger en formato PDF o ePUB, así como a otros libros populares de History y Historical Biographies. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2016
ISBN
9789386834362
Edición
1
Categoría
History
Issac Newton
Issac Newton
A Biography
Estefania Wenger
Alpha Editions
Copyright © 2017
ISBN : 9789386367297
Design and Setting By
Alpha Editions
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.
The views and characters expressed in the book are of the author and his/her imagination and do not represent the views of the Publisher.
Contents
Introduction
Early Life
Later Life
Religious views of Isaac Newton
Isaac Newton's occult studies
Isaac Newton in popular culture
Apple incident
About the Author
Introduction
Sir Isaac Newton FRS was an English physicist and mathematician (described in his own day as a "natural philosopher") who is widely recognised as one of the most influential scientists of all time and a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), first published in 1687, laid the foundations for classical mechanics. Newton made seminal contributions to optics, and he shares credit with Gottfried Wilhelm Leibniz for the development of calculus.
Newton's Principia formulated the laws of motion and universal gravitation, which dominated scientists' view of the physical universe for the next three centuries. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, and then using the same principles to account for the trajectories of comets, the tides, the precession of the equinoxes, and other phenomena, Newton removed the last doubts about the validity of the heliocentric model of the Solar System. This work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles. His prediction that Earth should be shaped as an oblate spheroid was later vindicated by the measurements of Maupertuis, La Condamine, and others, which helped convince most Continental European scientists of the superiority of Newtonian mechanics over the earlier system of Descartes.
Newton built the first practical reflecting telescope and developed a theory of colour based on the observation that a prism decomposes white light into the many colours of the visible spectrum. He formulated an empirical law of cooling, studied the speed of sound, and introduced the notion of a Newtonian fluid. In addition to his work on calculus, as a mathematician Newton contributed to the study of power series, generalised the binomial theorem to non-integer exponents, developed a method for approximating the roots of a function, and classified most of the cubic plane curves.
Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge. He was a devout but unorthodox Christian, and, unusually for a member of the Cambridge faculty of the day, he refused to take holy orders in the Church of England, perhaps because he privately rejected the doctrine of the Trinity. Beyond his work on the mathematical sciences, Newton dedicated much of his time to the study of biblical chronology and alchemy, but most of his work in those areas remained unpublished until long after his death. In his later life, Newton became president of the Royal Society. Newton served the British government as Warden and Master of the Royal Mint.
Early Life
Isaac Newton was born on Christmas Day, 25 December 1642 Old Style (which is 4 January 1643 on the Gregorian calendar, which is now used) at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. At the time of Newton's birth, England had not adopted the Gregorian calendar and therefore his date of birth was recorded as Christmas Day, according to the Julian calendar.
Newton was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Isaac Newton, Sr. was described as a "wild and extravagant man." Born prematurely, young Isaac was a small child; his mother Hannah Ayscough reportedly said that he could have fitted inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabus Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and held some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother to burn them and the house over them." Later on his mother returned after her husband died.
From the ages of 12 through 17, he was educated at The King's School, Grantham (where his signature can still be seen upon a library window sill). He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, where his mother, widowed by now for a second time, attempted to make a farmer of him. He hated farming. Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. This he did at the age of eighteen, achieving an admirable final report.
In June 1661, he was admitted to Trinity College, Cambridge as a sizar—a sort of work-study role. At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes and astronomers such as Copernicus, Galileo, and Kepler. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became infinitesimal calculus. Soon after Newton had obtained his degree in August 1665, the University closed down as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student, Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus, optics and the law of gravitation. In 1667 he returned to Cambridge as a fellow of Trinity.
Newton had stated that when he had purchased a book on astrology at Stourbridge fair, near Cambridge, he was unable, on account of his ignorance of trigonometry, to understand a figure of the heavens which was drawn in the book. He therefore bought an English edition of Euclid's Elements which included an index of propositions, and, having turned to two or three which he thought might be helpful, found them so obvious that he dismissed it "as a trifling book", and applied himself to the study of René Descartes' Geometry. It is reported that in his examination for a scholarship at Trinity, to which he was elected on 28 April 1664, he was examined in Euclid by Dr. Isaac Barrow, who was disappointed in Newton's lack of knowledge on the subject. Newton was convinced to read the Elements again with care, and formed a more favourable estimate of Euclid's merit.
The study of Descartes's Geometry seems to have inspired Newton with a love of the subject, and introduced him to higher mathematics. In a small commonplace book, dated January 1664, there are several articles on angular sections, and the squaring of curves and "crooked lines that may be squared", several calculations about musical notes, geometrical propositions from François Viète and Frans van Schooten, annotations out of John Wallis's Arithmetic of Infinities, together with observations on refraction, on the grinding of "spherical optic glasses", on the errors of lenses and the method of rectifying them, and on the extraction of all kinds of roots, particularly those "in affected powers." In this same book the following entry made by Newton himself, many years afterwards, gives a further account of the nature of his work during the period when he was an undergraduate:
July 4, 1699. By consulting an account of my expenses at Cambridge, in the years 1663 and 1664, I find that in the year 1664 a little before Christmas, I being then Senior Sophister, bought Schooten's Miscellanies and Cartes' Geometry (having read this Geometry and Oughtred's Clavis clean over half a year before), and borrowed Wallis' works, and by consequence made these annotations out of Schooten and Wallis, in winter between the years 1664 and 1665. At such time I found the method of Infinite Series; and in summer 1665, being forced from Cambridge by the plague, I computed the area of the Hyperbola at Boothby, in Lincolnshire, to two and fifty figures by the same method.
He formulated the three laws of motion:
1. Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.
2. The relationship between an object's mass m, its acceleration a, and the applied force F is F = ma. Acceleration and force are vectors (as indicated by their symbols being displayed in slant bold font); in this law the direction of the force vector is the same as the direction of the acceleration vector.
3. For every action there is an equal and opposite reaction.
Academic career
In January 1665 Newton took the degree of Bachelor of Arts. The persons appointed (in conjunction with the proctors, John Slade of Catharine Hall, Cambridge, and Benjamin Pulleyn of Trinity College, Newton's tutor) to examine the questionists were John Eachard of Catharine Hall and Thomas Gipps of Trinity University. It is a curious accident that we have no information about the respective merits of the candidates for a degree in this year, since the "ordo senioritatis" of the Bachelors of Arts for the year is omitted in the "Grace Book." It is supposed that it was in 1665 that the method of fluxións (his word for "derivatives") first occurred to Newton's mind. There are several papers in Newton's handwriting bearing dates 1665 and 1666 in which the method is described, in some of which dotted or dashed letters are used to represent fluxions, and in some of which the method is explained without the use of dotted letters.
Both in 1665 and in 1666 Trinity College was dismissed on account of the Great Plague of London. On each occasion it was agreed, as shown by entries in the "Conclusion Book" of the college, dated 7 August 1665, and 22 June 1666, and signed by the master of the college, Dr Pearson, that all fellows and scholars who were dismissed on account of the pestilence be allowed one month's commons. Newton must have left college before August 1665, as his name does not appear in the list of those who received extra commons on that occasion, and he tells us himself in the extract from his commonplace book already quoted that he was "forced from Cambridge by the plague" in the summer of that year. He was elected a fellow of his college on 5 October 1667. There were nine vacancies, one caused by the death of Abraham Cowley the previous summer, and the nine successful candidates were all of the same academic standing. A few weeks after his election to a fellowship Newton went to Lincolnshire, and did no...

Índice