Introducción al Machine Learning con MATLAB
eBook - ePub

Introducción al Machine Learning con MATLAB

  1. 260 páginas
  2. Spanish
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Introducción al Machine Learning con MATLAB

Descripción del libro

El Machine Learning representa una herramienta importante para la exploración y la extracción de conocimiento. Su principal objetivo es construir modelos que permitan describir posibles patrones estructurales en la información a partir de los datos, con el objetivo de tomar decisiones o hacer predicciones. En la última década, el número de usuarios de Machine Learning ha crecido de forma espectacular, pero muchos han presentado grandes dificultades a la hora de generar un plan adecuado que les permita pasar de los conceptos fundamentales a la solución de problemas en sus áreas de interés. El objetivo de este libro es brindar una visión particular de los principales métodos de Machine Learning y de su implementación, es decir, proveer de los principales conceptos en los que se basan estos métodos y aplicarlos a problemas típicos del procesamiento de datos. El libro se fundamenta en MATLAB, el cual es considerado hoy en día como un estándar en la programación científica e industrial. MATLAB contiene, dentro de sus funciones, poderosos métodos numéricos que pueden ser adaptados a aplicaciones particulares. Bajo estas condiciones, el usuario puede estar más concentrado en la estructura de su aplicación que en la programación misma. Asimismo, el libro es el resultado de un desmantelamiento completo del plan de estudios estándar del Machine Learning en sus componentes más fundamentales, así como de un reensamblaje de esas piezas, cuidadosamente pulidas y organizadas. Contiene descripciones intuitivas y, a su vez, rigurosas de los conceptos imprescindibles para analizar información a partir de datos. Todo esto deviene en una lectura que le permitirá: -Entender los principales conceptos en los que se basa el Machine Learning.-Implementar los métodos de Machine Learning.-Usar los diferentes recursos online que incluyen código fuente y bases de datos.-Comprender las principales técnicas de programación con MATLAB orientadas a la implementación de aplicaciones de Machine Learning.Sin importar si tiene poca o mucha experiencia en programación, con este libro obtendrá las habilidades teóricas y prácticas para emplear el Machine Learning en su totalidad. Hágase con su ejemplar y descubra los detalles estructurales de la información de sus propios proyectos para predecir y manipular con precisión su comportamiento futuro.

Preguntas frecuentes

Sí, puedes cancelar tu suscripción en cualquier momento desde la pestaña Suscripción en los ajustes de tu cuenta en el sitio web de Perlego. La suscripción seguirá activa hasta que finalice el periodo de facturación actual. Descubre cómo cancelar tu suscripción.
No, los libros no se pueden descargar como archivos externos, como los PDF, para usarlos fuera de Perlego. Sin embargo, puedes descargarlos en la aplicación de Perlego para leerlos sin conexión en el móvil o en una tableta. Obtén más información aquí.
Perlego ofrece dos planes: Essential y Complete
  • El plan Essential es ideal para los estudiantes y los profesionales a los que les gusta explorar una amplia gama de temas. Accede a la biblioteca Essential, con más de 800 000 títulos de confianza y superventas sobre negocios, crecimiento personal y humanidades. Incluye un tiempo de lectura ilimitado y la voz estándar de «Lectura en voz alta».
  • Complete: perfecto para los estudiantes avanzados y los investigadores que necesitan un acceso completo sin ningún tipo de restricciones. Accede a más de 1,4 millones de libros sobre cientos de temas, incluidos títulos académicos y especializados. El plan Complete también incluye funciones avanzadas como la lectura en voz alta prémium y el asistente de investigación.
Ambos planes están disponibles con un ciclo de facturación mensual, semestral o anual.
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¡Sí! Puedes usar la aplicación de Perlego en dispositivos iOS o Android para leer cuando y donde quieras, incluso sin conexión. Es ideal para cuando vas de un lado a otro o quieres acceder al contenido sobre la marcha.
Ten en cuenta que no será compatible con los dispositivos que se ejecuten en iOS 13 y Android 7 o en versiones anteriores. Obtén más información sobre cómo usar la aplicación.
Sí, puedes acceder a Introducción al Machine Learning con MATLAB de Erik Valdemar Cuevas Jiménez en formato PDF o ePUB, así como a otros libros populares de Ciencia de la computación y Compiladores. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Marcombo
Año
2021
ISBN del libro electrónico
9788426733542
Edición
1
Categoría
Compiladores

CAPÍTULO 1

Fundamentos del Machine Learning

En este capítulo se presentan los conceptos básicos del aprendizaje máquina, que permitirán al lector familiarizarse con el tema. Además, se introducen los pasos básicos en la aplicación del aprendizaje máquina. Por último, se discute acerca de la importancia de los tipos de datos, su preprocesamiento y su despliegue. Los objetivos principales de este capítulo son: aprender de forma rápida y sencilla el proceso de aplicación del aprendizaje máquina, así como comprender sus principios.
Illustration
Objetivos:
Conocer los conceptos del aprendizaje máquina
Entender las diferentes etapas del aprendizaje máquina
Aprender a utilizar las herramientas en la preparación de datos para el aprendizaje máquina en problemas reales

1.1. Introducción

A fin de responder «¿qué es el aprendizaje máquina?», es necesario partir de la siguiente definición dada por Bostjan Kaluza (2016) [1]:
El aprendizaje máquina es un subcampo de la inteligencia artificial. Este ayuda a los ordenadores a aprender y actuar como seres humanos con la ayuda de algoritmos y datos. Dado un conjunto de datos, un algoritmo de aprendizaje máquina aprende diferentes propiedades de los datos e infiere las propiedades de los datos que se pueden presentar en el futuro.
A partir de la definición anterior, se puede inferir que el objetivo del aprendizaje máquina es desarrollar sistemas que permitan a los ordenadores aprender y generalizar comportamientos. En la actualidad, el aprendizaje máquina se aplica en diversas áreas: en medicina, como auxiliar en el diagnóstico de diversas patologías y como clasificador de secuencias de ADN; en sistemas financieros, analizando el mercado de valores y detectando fraudes en el uso de tarjetas de crédito; o en informática, aplicado en sistemas de reconocimiento de habla y lenguaje escrito, entre otras.
Existen conceptos clave en el aprendizaje máquina que sientan las bases para comprender este campo. Estos pueden dividirse en dos áreas sustanciales: los conceptos sobre datos y los conceptos sobre aprendizaje. Los conceptos sobre datos otorgan la nomenclatura apropiada para describir los datos y sus conjuntos. Los conceptos sobre aprendizaje describen el aprendizaje obtenido a partir de los datos.

1.2. Conceptos sobre datos

Como se mencionó anteriormente, los métodos de aprendizaje máquina aprenden a partir de los ejemplos. Resulta importante tener una buena comprensión de los datos de entrada y la variada terminología utilizada al describir los datos. Los datos pueden estructurarse en filas y columnas, como una tabla de base de datos o como una hoja de cálculo. Estos son conocidos como «estructura tradicional de datos», y son comunes en el campo del aprendizaje máquina.
Los conceptos básicos para datos del aprendizaje máquina se definen a continuación:
Observación: es la entidad más pequeña, con propiedades de interés para un estudio que puede ser registrado.
Características: son las propiedades o atributos de las observaciones que pueden ser útiles para el aprendizaje.
Tipo de datos: las características tienen un tipo de datos. Estos pueden ser de valor real o entero, o pueden tener un valor categórico u ordinal.
Conjuntos de datos: una colección de observaciones es un conjunto de datos y, cuando se trabaja con métodos de aprendizaje máquina, generalmente se requieren algunos conjuntos de datos para diferentes propósitos.
Datos de entrenamiento: conforman un conjunto de datos que se incorpora al algoritmo de aprendizaje máquina para entrenar al modelo.
Datos de prueba: constituyen un conjunto de datos utilizado para validar la precisión del modelo, pero que no se emplea para entrenar al modelo. Se lo conoce también como «conjunto de datos de validación».
Además de los datos mencionados con anterioridad, existen otros, como imágenes, vídeos y texto. Estos son llamados «datos no estructurados», para poder ser aplicados a métodos de aprendizaje máquina, los cuales deben ser transformados a una forma estructurada de datos. Los datos no estructurados no se consideran en este libro.

1.3. Conceptos sobre aprendizaje

En este apartado, se consideran algunos conceptos de alto nivel sobre el aprendizaje. El aprendizaje máquina se apoya/basa en el aprendizaje con algoritmos. Los conceptos básicos sobre aprendizaje se definen a continuación:
Inducción: los algoritmos de aprendizaje máquina aprenden a través de un proceso llamado «inducción del aprendizaje». Este es un proceso de razonamiento donde se realiza un modelo de la información (datos de entrenamiento).
Generalización: el objetivo de la generalización reside en encontrar el patrón o modelo más significativo para las instancias del entrenamiento. A partir de este modelo, se realizan predicciones o decisiones.
Sobreentrenamiento: se conoce como sobreentrenamiento al hecho de que un modelo aprenda los datos de entrenamiento de una manera tan precisa o exacta que pierda la capacidad de generalizar. El resultado es un bajo rendimiento en datos que no sean del conjunto de entrenamiento.
Subentrenamiento: se refiere a cuando un modelo no ha aprendido suficientemente la estructura de la base de datos, debido a que el proceso de aprendizaje finalizó de forma temprana o inesperada. El resultado que otorga el subentrenamiento resulta bueno en términos de generalización, pero su rendimiento es deficiente en la mayoría de los datos, incluido el conjunto de datos de entrenamiento.
Aprendizaje en línea: el aprendizaje en línea se lleva a cabo cuando un método de aprendizaje máquina se alimenta con observaciones de datos del tema en cuestión, a medida que estén disponibles. El aprendizaje en línea requiere métodos que sean robustos para los datos ruidosos, pero también puede producir modelos que sean más afines con el estado actual del conjunto de datos del tema en cuestión.
Aprendizaje fuera de línea: el aprendizaje fuera de línea se produce cuando el método se alimenta con datos preparados previamente, que, luego, se utilizan de manera operacional en datos no observados. El proceso de entrenamiento puede controlarse y puede ajustarse de forma cuidadosa, porque el alcance de los datos de entrenamiento es conocido [2].
Una vez definidos los conceptos básicos, tanto para los datos como para el aprendizaje, se puede pasar a conocer los tipos de problemas existentes dentro del entorno del aprendizaje máquina, así como los tipos de datos y tipos de aprendizaje utilizados en el desarrollo de...

Índice

  1. Cubierta
  2. Título
  3. Créditos
  4. Índice general
  5. Prólogo
  6. Capítulo 1. Fundamentos del Machine Learning
  7. Capítulo 2. Bases matemáticas
  8. Capítulo 3. Clasificación
  9. Capítulo 4. Regresión lineal
  10. Capítulo 5. Agrupamiento (clustering)
  11. Capítulo 6. Reducción de dimensionalidad
  12. Capítulo 7. Métodos unidos
  13. Capítulo 8. Reconocimiento de objetos
  14. Capítulo 9. Estadística inferencial
  15. Capítulo 10. Evaluación del desempeño