Practical Radiation Oncology Physics E-Book
eBook - ePub

Practical Radiation Oncology Physics E-Book

A Companion to Gunderson & Tepper's Clinical Radiation Oncology

Sonja Dieterich, Eric Ford, Daniel Pavord, Jing Zeng

Compartir libro
  1. 400 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Practical Radiation Oncology Physics E-Book

A Companion to Gunderson & Tepper's Clinical Radiation Oncology

Sonja Dieterich, Eric Ford, Daniel Pavord, Jing Zeng

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Perfect for radiation oncologists, medical physicists, and residents in both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition of Clinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice.

  • Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy.
  • Describes technical aspects and patient-related aspects of current clinical practice.
  • Offers key practice guideline recommendations from professional societies throughout — including AAPM, ASTRO, ABS, ACR, IAEA, and others.
  • Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus the equipment associated with their production, use, measurement, and evaluation.
  • Features a " For the Physician " box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care.
  • Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents.
  • Medicine eBook is accessible on a variety of devices.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Practical Radiation Oncology Physics E-Book un PDF/ePUB en línea?
Sí, puedes acceder a Practical Radiation Oncology Physics E-Book de Sonja Dieterich, Eric Ford, Daniel Pavord, Jing Zeng en formato PDF o ePUB, así como a otros libros populares de Medizin y Onkologie. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Elsevier
Año
2015
ISBN
9780323263757
Categoría
Medizin
Categoría
Onkologie
Part I
Building Blocks
Chapter 1

Reference Dosimetry for Ionizing Radiation

1.1 Introduction

The key to the accurate delivery of radiation is the ability to establish the absolute dose delivered. In radiation therapy clinical practice the primary tool used to measure absorbed dose is the ion chamber. The use of ion chambers has been well described by international codes of practice. While some of the details may differ slightly, the basic concepts of the various codes of practice are the same. The ionization measured by the chamber (typically filled with air) is converted to absorbed dose by applying a calibration factor (determined by an accredited calibration lab) and other correction factors based on the chamber design. The calibration factor may be a direct calibration in water (megavoltage (MV) photons, MV electrons, protons) or a calibration based on air kerma (kilovoltage (kV) photons, brachytherapy sources). The end goal is to determine absorbed dose to water in either case.
The starting point for these calibrations is the absorbed dose standard developed at a primary standard dosimetry laboratory (PSDL). End users obtain a calibration factor for their equipment at a secondary standard dosimetry laboratory (SSDL), also known as an accredited dosimetry calibration lab (ADCL). The SSDL applies the standard developed by the PSDL using the available radiation sources at that lab. All SSDLs have 60Co sources available for calibration but may not have linac-generated beams. Some labs do have other high energy photon beams available and can provide a calibration at multiple beam qualities. In the absence of this, correction factors must be applied to the calibration determined at 60Co energy to determine the calibration for the beam quality of interest. Further corrections are needed if the beam of interest is protons or other heavy ions. For a more complete discussion of the interaction between PSDLs, SSDLs, and the end user, the reader is referred to section 2.1 of International Atomic Energy Agency (IAEA) TRS-398, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water.1
The regulations on the frequency of a full calibration in water may vary from country to country but are generally required at least once per year. The suggested regulations by the Conference of Radiation Control Program Directors (CRCPD) and implemented by many states in the United States require full calibrations at intervals not to exceed 12 months (section X.7.iii). More frequent constancy checks are required but can be done using solid phantoms and dosimetry equipment that is not calibrated by a calibration laboratory. These constancy devices should be compared with the calibrated system immediately after the annual full calibration. The equipment used for the full calibration should be sent for recalibration every 2 years. A constancy check should be performed before sending equipment to the calibration lab and after receiving it back to ensure that nothing happened during the process to change the response of the chamber. For new radiation therapy treatment machines, a second check of the absolute dose calibration should be obtained prior to treating patients.2 This could be accomplished by using a mail-order reference dosimetry service or a second check by a colleague using an independent dosimetry system.

1.2 Standard Megavoltage Photon Beams

Several international codes of practice are used to determine absorbed dose for MV photon beams, the American Association of Physicists in Medicine (AAPM) TG-51, Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams,3 IAEA TRS-398, Absorbed Dose Determination in External Beam Radiotherapy,1 Deutsche Industrie-Norm (DIN) 6800-2, Dosimetry Method for Photon and Electron Radiation—Part 2 Dosimetry of High Energy Photon and Electron Radiation with Ionization Chambers,4 Institute of Physics and Engineering in Medicine (IPEM) 1990, Code of Practice for High-Energy Photon Therapy Dosimetry,5 and others. An addendum to AAPM TG-51 has been published containing new kQ values.6 They are all based on absorbed dose in water calibrations of cylindrical ion chambers. The charge reading obtained from the ion chamber is corrected for temperature, pressure, ion recombination, and polarity. Corrections are then made to account for the perturbation to the medium (water) caused by the presence of the ion chamber. The calibration factor is then used to convert charge to absorbed dose. All of the protocols use a reference field size of 10 cm × 10 cm but the depth and source-to-surface distance (SSD) can vary among them. It is important to note that the reference depth for the calibration protocol is likely not the depth of absorbed dose specification in the clinic. For example, the protocol may specify measurement at 10 cm depth but the output of the machine is adjusted to 1.0 cGy/MU at depth of dose maximum (dmax). This will require the use of accurate percent depth dose to correct the readings taken at 10 cm depth to dmax depth. The general equation to calculate absorbed dose from a charge reading of an ion chamber measured with an electrometer is:
image
where Dw(z) = absorbed dose to water at depth z
M = the ion chamber reading corrected for the electrometer calibration
ND,w = calibration factor for absorbed dose to water for 60Co energy
kp = polarity correction. The value is generally less than 1% from...

Índice