El objetivo de este texto es servir de apoyo al estudiante que sigue un curso básico de Física Estadística, útil también para profesores, especialmente para los que se plantean qué contenidos escoger para el curso. Se trata, pues, de un "Manual de Física Estadística" con un planteamiento y contenido adecuados a los fines docentes que se persiguen y que ha surgido en conexión directa con la valoración de la docencia de los autores.
Preguntas frecuentes
Sí, puedes cancelar tu suscripción en cualquier momento desde la pestaña Suscripción en los ajustes de tu cuenta en el sitio web de Perlego. La suscripción seguirá activa hasta que finalice el periodo de facturación actual. Descubre cómo cancelar tu suscripción.
No, los libros no se pueden descargar como archivos externos, como los PDF, para usarlos fuera de Perlego. Sin embargo, puedes descargarlos en la aplicación de Perlego para leerlos sin conexión en el móvil o en una tableta. Obtén más información aquí.
Perlego ofrece dos planes: Essential y Complete
El plan Essential es ideal para los estudiantes y los profesionales a los que les gusta explorar una amplia gama de temas. Accede a la biblioteca Essential, con más de 800 000 títulos de confianza y superventas sobre negocios, crecimiento personal y humanidades. Incluye un tiempo de lectura ilimitado y la voz estándar de «Lectura en voz alta».
Complete: perfecto para los estudiantes avanzados y los investigadores que necesitan un acceso completo sin ningún tipo de restricciones. Accede a más de 1,4 millones de libros sobre cientos de temas, incluidos títulos académicos y especializados. El plan Complete también incluye funciones avanzadas como la lectura en voz alta prémium y el asistente de investigación.
Ambos planes están disponibles con un ciclo de facturación mensual, semestral o anual.
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¡Sí! Puedes usar la aplicación de Perlego en dispositivos iOS o Android para leer cuando y donde quieras, incluso sin conexión. Es ideal para cuando vas de un lado a otro o quieres acceder al contenido sobre la marcha. Ten en cuenta que no será compatible con los dispositivos que se ejecuten en iOS 13 y Android 7 o en versiones anteriores. Obtén más información sobre cómo usar la aplicación.
Sí, puedes acceder a Manual de Física Estadística de Salvador Mafé Matoses,Juan de la Rubia Pacheco en formato PDF o ePUB, así como a otros libros populares de Ciencias físicas y Física. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.
1. Descripció estadística dels sistemes macroscòpics
1. Introducció
1.1 Objectiu i mètodes
L'objectiu de la Física Estadística, i en particular d'aquest curs, és deduiri interpretar les propietats macroscopiques de sistemes formats per moltes individualitats (àtoms, molècules, etc.) a partir d'una descripció microscòpica d'aquests. Les bases sobre les quals s'assenta la Física Estadística involucren principis i resultats de l'Estadística Matemàtica, la Mecànica Clàssica i Quàntica i la Termodinàmica bàsicament, si bé és necessària la introducció d'un nombre addicional de postulats propis. Les aplicacions de la Física Estadística van des de la Matemàtica Aplicada fins a l'Enginyeria, i són d'especial interès en Biologia, Química i Física, com també en els camps científics entre aquestes ciències (Bioquímica, Biofísica, Química-Física i Electroquímica), si bé en aquest curs remarcarem principalment les aplicacions físiques.
Com que els conceptes i tècniques necessaris per a l'anàlisi d'un sistema constituït per un gran nombre d'individualitats (que anomenarem genèricament «partícules») estan basats en raonaments mecànics i estadístics, la part de la Física a què fa referència aquesta matèria es denomina també Mecànica Estadística. Si es suposa que les partícules que constitueixen el sistema presenten un comportament regit només per les lleis de la Mecànica, podria semblar que el problema de la Física Estadística consisteix en la resolució de les equacions de moviment per al conjunt de partícules. Aquesta resolució no és possible tècnicament1 en sistemes constituïts per un nombre de partícules de l'ordre del d'Avogadro,
. A més a més, l'experiència indica que l'estat macroscopic d'un sistema es caracteritza per un petit nombre de variables termodinà- miques (pressió, volum, temperatura, etc.) en comparació amb el gran nombre de variables mecàniques requerides per a descriure l'estat dinàmic de N partícules (3N coordenades generalitzades i les 3N components dels moments generalitzats, p. ex.). En passar de l'escala microscòpica (distàncies de l'ordre d'l nm) a la macroscòpica (distàncies de l'ordre d'l μm, p. ex.) es produeix una dràstica selecció de la informació continguda en la descripció microscòpica [Callen, cap. 1]. A l'esmentada selecció s'arriba, tal com hem assenyalat, aplicant tècniques de l'Estadística Matemàtica junt amb principis o postulats addicionals no gens trivials.
Encara més, suposant de nou que el problema d'analitzar el comportament dels sistemes de N partícules és purament matemàtic una vegada que es coneixen amb detall (p. ex. per Mecànica Quàntica) les lleis que regeixen el comportament individual de cadascuna de les N partícules, la realitat és que interaccions entre partícules relativament simples sovint porten a comportaments col·lectius difícils d'interpretar. Aquest és el cas de les transicions de fase i punts crítics, l'ordenació, diferenciació i creixement en sistemes biològics, les fluctuacions i fenòmens de no equilibri, etc.
No obstant, és cert que molts problemes físics com el comportament dels sòlids i líquids, la radiació electromagnètica, etc. es simplifiquen notablement quan són abordats per mètodes estadístics, de manera que si bé els sistemes de moltes partícules presenten una gran complexitat si el que es pretén és una descripció microscòpica detallada d'aquests, la descripció macroscòpica basada en mitjanes estadístiques és relativament senzilla. Aquesta descripció involucra magnituds com el volum i l'energia, com també d'altres sense anàleg microscopic com la temperatura. Per a aquestes darreres magnituds, es fa necessari connectar els resultats de la Física Estadística amb els de la Termodinàmica. Aquesta connexió no implica cap subordinació, ja que la Física Estadística permet obtindré valors numèrics per a les diferents magnituds a partir de models microscòpics, mentre que la Termodinàmica, que no introdueix hipòtesis sobre l'estructura de la matèria, proporciona només relacions formals (això sí, de gran importància conceptual i de validesa general) entre les dites magnituds.
1.2 Un problema que planteja algunes preguntes
Un problema que apareix sovint en Física Estadística és el següent. Disposem d'un conjunt de dades experimentals corresponents a un cert sistema físic i pretenem descriure el comportament microscopic del sistema de partícules que formen el dit sistema físic a partir d'una hamiltoniana del tipus:
on EC i U son les energies cinètica i potencial del sistema de partícules. A partir de l' eq. (1), és possible (almenys formalment) escriure l'equació de Schrödinger per al sistema i resoldre-la per trobar els estats quàntics del sistema. Ara bé, ¿com podem descriure totes les dades experimentals anteriors a partir de la solució anterior? Dit altrament, ¿com és possible, donat un model de hamilto- nià microscopic, predir el comportament macroscopic d'un sistema? En principi, sabem que la solució de l'equació de Schrödinger proporciona els estats possibles del sistema, però la determinació de l'estat microscopic real d'aquest requeriria típicament un nombre de mesures de l'ordre del nombre d'àtoms present,
. En la pràctica, però, l'estat macroscopic del sistema es determina mitjançant un nombre limitat de magnituds: la pressió, el volum i la temperatura, p. ex. Dit d'una altra manera: sabem quins són els estats micros- còpics possibles del sistema, però la informació macroscòpica de què disposem és moltíssim més limitada. ¿Com podem relacionar l'ingent nombre d'estats microscòpics accessibles (compatibles amb les condicions imposades al sistema) amb el seu estat macroscopic particular?
La resposta a la pregunta anterior segueix un procediment d'inferència estadística: es considera un conjunt mental format per un gran nombre N de sistemes idèntics en el mateix estat macroscopic però en estats microscòpics diferents. Després, es considera una distribució de probabilitat per als estats microscòpics anteriors a partir de les característiques físiques del sistema estudiat. Conegudes les probabilitats respectives dels estats micr...
Índice
Cover
Title
Copyright
Dedication
Contents
PRESENTACIÓ
CAPÍTOL 1. Descripció estadística dels sistemes macroscòpics
CAPÍTOL 2. Entropia i temperatura. Col·lectiu microcanònic
CAPÍTOL 3. Factor de Boltzmann: col·lectiu canònic
CAPÍTOL 4. Factor de Gibbs: col·lectiu gran canònic
CAPÍTOL 5. Gasos ideals. Estudi quàntic i clàssic
CAPÍTOL 6. Gasos de fermions i bosons degenerats
CAPÍTOL 7. Sistemes de partícules interactives
CAPÍTOL 8. Teoria cinètica elemental dels fenòmens de transport