GRE - Quantitative Reasoning
eBook - ePub

GRE - Quantitative Reasoning

QuickStudy Laminated Reference Guide

Compartir libro
  1. 44 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

GRE - Quantitative Reasoning

QuickStudy Laminated Reference Guide

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Increase your score on the GRE with a tool that is easy to review and less expensive than any other study aid. Whether taking the exam while in college, after your undergrad, or with some time in-between, a 6-page laminated guide can go anywhere for review of concepts you will learn in exam prep courses or through test-taking books. This thorough and slick breakdown of the mathematical and reasoning concepts for conquering this section of the test is so handy and concise that you can review anywhere in record time.
6-page laminated guide includes:

  • Exam Overview
  • Arithmetic
    • Integers, Exponents, Order of Operations
    • Scientific Notation
    • Adding Radicals
    • Fractions, Percents, Absolute Value
    • Rounding Numbers, Proportions & Ratios
    • Distance, Speed & Time
    • Averages
  • Algebra
    • Solving Algebraic Equations
    • Binomials & Trinomials
  • Geometry
    • Angles, Points, Lines
    • Shapes
    • Areas & Perimeters
    • Volumes & Surface Area
  • Data Interpretation
    • Graphs, Standard Deviation
    • Probability
    • Independent vs. Dependent Variables
    • Mean, Median, Mode & Range
    • Word Problems
  • Measurement
  • Scoring

Suggested uses:

  • Review Anywhere – exam prep books are huge, with much space used for sample questions, this guide focuses on how to answer – keep in your bag or car to review any place, any time
  • The Whole Picture – with 6 pages, it is easy to jump to one section or another to go straight to the core of the concept you need for answering questions
  • Last Review – many people use our guides as a last review before they enter an exam

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es GRE - Quantitative Reasoning un PDF/ePUB en línea?
Sí, puedes acceder a GRE - Quantitative Reasoning de en formato PDF o ePUB, así como a otros libros populares de Study Aids y Study Guides. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2018
ISBN
9781423240631
Categoría
Study Aids
Categoría
Study Guides
Arithmetic
Topics include integers, such as divisibility, factorization, prime numbers, remainders, and odd and even integers; arithmetic operations, exponents, and roots; and concepts such as estimation, percent, ratio, rate, absolute value, the number line, decimal representation, and sequences of numbers.
Integers Properties of Integers
  • Integer: Number with no fraction or decimal.
  • An integer can be positive, negative, or 0.
    EX: -2, 0, 18
Identity Properties
  • A number will not change when adding 0 to the number.
    EX: 8 + 0 = 8
    EX: y + 0 = y
  • A number will not change when multiplying it by 1.
    EX: 6 × 1 = 6
    EX: y × 1 = y
Properties of Zero
  • Any number multiplied by 0 is 0.
  • If the product is 0, one or more of the factors must equal 0.
    EX: a × b × c × d = 0
    a, b, c, or d must equal 0.
  • If the product is not equal to 0, none of the factors equals 0.
    EX: a × b × c × d ≠ 0
    a, b, c, and d ≠ 0.
Divisibility
  • An integer is divisible by 2 if the last digit in the integer is divisible by 2.
    EX: 8,542,634
    4 is divisible by 2.
    Therefore, 8,542,634 is divisible by 2.
  • An integer is divisible by 3 if the sum of the digits in the integer is divisible by 3.
    EX: 865,257
    8 + 6 + 5 + 2 + 5 + 7 = 33
    33 is divisible by 3.
    Therefore, 865,257 is divisible by 3.
  • An integer is divisible by 4 if the last digit in the integer is divisible by 4.
    EX: 5,243,624
    24 is divisible by 4.
    Therefore, 5,243,624 is divisible by 4.
  • An integer is divisible by 5 if the last digit in the integer is 0 or 5.
    EX: 6,842,570
    The last digit is 0.
    Therefore, 6,842,570 is divisible by 5.
  • An integer is divisible by 6 if the integer is divisible by both 2 and 3.
    EX: 358,416
    3 + 5 + 8 + 4 + 1 + 6 = 27
    27 is divisible by 3.
    6 is divisible by 2.
    Therefore, 358,416 is divisible by 6.
  • An integer is divisible by 9 if the sum of the digits in the integer is divisible by 9.
    EX: 620,874
    6 + 2 + 0 + 8 + 7 + 4 = 27
    27 is divisible by 9.
    Therefore, 620,874 is divisible by 9.
Odd & Even Integers
  • A number is even if the last digit in the number is 0, 2, 4, 6, or 8.
    EX: 6,584,298
    The last digit of the number is 8.
    Therefore, 6,584,298 is even.
  • A number is odd if the last digit in the number is 1, 3, 5, 7, or 9.
    EX: 2,451,869
    The last digit of the number is 9.
    Therefore, 2,451,869 is odd.
  • An even integer can be represented as 2k, where k is an integer.
  • An odd integer can be represented as 2k + 1 or 2k – 1, where k is an integer.
Rules for Adding & Multiplying Odd & Even Numbers
  1. Odd + Odd = Even
  2. Even + Even = Even
  3. Odd + Even = Odd
  4. Odd × Odd = Odd
  5. Even × Even = Even
  6. Odd × Even = Even
Prime Numbers & Factors
  • Factors of an integer are integers that can be divided evenly into the integer.
    EX: The factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.
  • Prime number: Number that can only be divided evenly by itself and 1.
    EX: 19 is a prime number.
  • The prime numbers up to twenty are 2, 3, 5, 7, 11, 13, 17, and 19.
  • 0 and 1 are never prime numbers.
  • 2 is the only even prime number.
Least Common Multiple
  • The least common multiple of two or more numbers is the smallest number that is a multiple of each of the original numbers.
    EX: The least common multiple of 3 and 13 is 39.
    The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, etc.
    The multiples of 13 are 13, 26, 39, etc.
    39 is the smallest number that intersects these lists.
Exponents
  • When multiplying two numbers with the same base, add the exponents.
    EX: 83 × 84 = 8 × 8 × 8 × 8 × 8 × 8 × 8 = 87
  • When dividing two numbers with the same base, subtract the exponents.
    EX: 76 ÷ 72 = (7 × 7 × 7 × 7 × 7 × 7) ÷ (7 × 7) = 74
  • When multiplying two num...

Índice