Transformers for Machine Learning
eBook - ePub

Transformers for Machine Learning

A Deep Dive

Uday Kamath, Kenneth Graham, Wael Emara

Compartir libro
  1. 257 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Transformers for Machine Learning

A Deep Dive

Uday Kamath, Kenneth Graham, Wael Emara

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Transformers are becoming a core part of many neural network architectures, employed in a wide range of applications such as NLP, Speech Recognition, Time Series, and Computer Vision. Transformers have gone through many adaptations and alterations, resulting in newer techniques and methods. Transformers for Machine Learning: A Deep Dive is the first comprehensive book on transformers.

Key Features:

  • A comprehensive reference book for detailed explanations for every algorithm and techniques related to the transformers.
  • 60+ transformer architectures covered in a comprehensive manner.
  • A book for understanding how to apply the transformer techniques in speech, text, time series, and computer vision.
  • Practical tips and tricks for each architecture and how to use it in the real world.
  • Hands-on case studies and code snippets for theory and practical real-world analysis using the tools and libraries, all ready to run in Google Colab.

The theoretical explanations of the state-of-the-art transformer architectures will appeal to postgraduate students and researchers (academic and industry) as it will provide a single entry point with deep discussions of a quickly moving field. The practical hands-on case studies and code will appeal to undergraduate students, practitioners, and professionals as it allows for quick experimentation and lowers the barrier to entry into the field.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Transformers for Machine Learning un PDF/ePUB en línea?
Sí, puedes acceder a Transformers for Machine Learning de Uday Kamath, Kenneth Graham, Wael Emara en formato PDF o ePUB, así como a otros libros populares de Computer Science y Neural Networks. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2022
ISBN
9781000587098
Edición
1
Categoría
Computer Science
Categoría
Neural Networks

CHAPTER 1Deep Learning and Transformers: An Introduction

DOI: 10.1201/9781003170082-1
TRANSFORMERS are deep learning models that have achieved state-of-the-art performance in several fields such as natural language processing, computer vision, and speech recognition. Indeed, the massive surge of recently proposed transformer model variants has meant researchers and practitioners alike find it challenging to keep pace. In this chapter, we provide a brief history of diverse research directly or indirectly connected to the innovation of transformers. Next, we discuss a taxonomy based on changes in the architecture for efficiency in computation, memory, applications, etc., which can help navigate the complex innovation space. Finally, we provide resources in tools, libraries, books, and online courses that the readers can benefit from in their pursuit.

1.1 Deep Learning: A Historic Perspective

In the early 1940s, S. McCulloch and W. Pitts, using a simple electrical circuit called a “threshold logic unit”, simulated intelligent behavior by emulating how the brain works [179]. The simple model had the first neuron with inputs and outputs that would generate an output 0 when the “weighted sum” was below a threshold and 1 otherwise, which later became the basis of all the neural architectures. The weights were not learned but adjusted. In his book The Organization of Behaviour (1949), Donald Hebb laid the foundation of complex neural processing by proposing how neural pathways can have multiple neurons firing and strengthening over time [108]. Frank Rosenblatt, in his seminal work, extended the McCulloch–Pitts neuron, referring to it as the “Mark I Perceptron”; given the inputs, it generated outputs using linear thresholding logic [212].
The weights in the perceptron were “learned” by repeatedly passing the inputs and reducing the difference between the predicted output and the desired output, thus giving birth to the basic neural learning algorithm. Marvin Minsky and Seymour Papert later published the book Perceptrons which revealed the limitations of perceptrons in learning the simple exclusive-or function (XOR) and thus prompting the so-called The First AI Winter [186].
John Hopfield introduced “Hopfield Networks”, one of the first recurrent neural networks (RNNs) that serve as a content-addressable memory system [117].
In 1986, David Rumelhart, Geoff Hinton, and Ronald Williams published the seminal work “Learning representations by back-propagating errors” [217]. Their work confirms how a multi-layered neural network using many “hidden” layers can overcome the weakness of perceptrons in learning complex patterns with relatively simple training procedures. The building blocks for this work had been laid down by various research over the years by S. Linnainmaa, P. Werbos, K. Fukushima, D. Parker, and Y. LeCun [91, 149, 164, 196, 267].
LeCun et al., through their research and implementation, led to the first widespread application of neural networks to recognize the hand-written digits used by the U.S. Postal Service [150]. This work is a critical milestone in deep learning history, proving the utility of convolution operations and weight sharing in learning the features in computer vision.
Backpropagation, the key optimization technique, encountered a number of issues such as vanishing gradients, exploding gradients, and the inability to learn long-term information, to name a few [115]. Hochreiter and Schmidhuber, in their work,“Long short-term memory (LSTM)” architecture, demonstrated how issues with long-term dependencies could overcome shortcomings of backpropagation over time [116].
Hinton et al. published a breakthrough paper in 2006 titled “A fast learning algorithm for deep belief nets”; it was one of the reasons for the resurgence of deep learning [113]. The research highlighted the effectiveness of layer-by-layer training using unsupervised methods followed by supervised “fine-tuning” to achieve state-of-the-art results in character recognition. Bengio et al., in their seminal work following this, offered deep insights into why deep learning networks with multiple layers can hierarchically learn features as compared to shallow neural networks [27]. In their research, Bengio and LeCun emphasized the advantages of deep learning through architectures such as convolutional neural networks (CNNs), restricted Boltzmann machines (RBMs), and deep belief networks (DBNs), and through techniques such as unsupervised pre-training with fine-tuning, thus inspiring the next wave of deep learning [28]. Fei-Fei Li, head of the artificial intelligence lab at Stanford University, along with other researchers, launched ImageNet, which resulted in the most extensive collection of images and, for the first time, highlighted the usefulness of data in learning essential tasks such as object ...

Índice