Filosofía sintética de las matemáticas contemporáneas
eBook - ePub

Filosofía sintética de las matemáticas contemporáneas

  1. 304 páginas
  2. Spanish
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Filosofía sintética de las matemáticas contemporáneas

Descripción del libro

 Esta monografía presenta, por vez primera en el campo internacional, una mirada    sintética   sobre el amplísimo espectro de las    matemáticas contemporáneas,   junto con un análisis de los nuevos problemas    filosóficos   que allí se originan. La contaminación de todas las subdisciplinas matemáticas entre sí, la dinámica de los conglomerados de estructuras, la geometrización, fluxión y reflexión del pensamiento matemático contemporáneo —ejemplificadas en la figura señera de Grothendieck, protagonista principal de la monografía— se entrelazan en lo profundo con temáticas filosóficas usualmente desapercibidas: transitoriedad ontológica, hacificación epistemológica, fenomenología de la creatividad matemática.  

 La primera parte del texto discute la especificidad de las matemáticas modernas (1830-1950) y contemporáneas (de 1950 a hoy) y realiza un extenso recorrido bibliográfico sobre la aparición (o ausencia) de las matemáticas avanzadas dentro de los tratados de filosofía matemática. La segunda parte, a través de trece detallados estudios de caso sobre creadores mayores en el área, elabora un mapa de algunos avances centrales logrados en la matemática del último medio siglo. La tercera parte propone esbozos genéricos de síntesis que se elevan sobre los ejemplos concretos revisados en la segunda parte. Este libro sirve de introducción conceptual a temas matemáticos rara vez mencionados por fuera de círculos de especialistas y de urdimbre crítica para que la matemática actual ayude a configurar nuevas perspectivas culturales. Si la filosofía analítica se fraguó a partir de la teoría de conjuntos y la lógica clásica a comienzos del siglo XX, es hora de que una complementaria filosofía sintética se construya sobre la teoría de categorías y la lógica de los haces a comienzos del siglo XXI. 

Preguntas frecuentes

Sí, puedes cancelar tu suscripción en cualquier momento desde la pestaña Suscripción en los ajustes de tu cuenta en el sitio web de Perlego. La suscripción seguirá activa hasta que finalice el periodo de facturación actual. Descubre cómo cancelar tu suscripción.
Por el momento, todos los libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
Perlego ofrece dos planes: Esencial y Avanzado
  • Esencial es ideal para estudiantes y profesionales que disfrutan explorando una amplia variedad de materias. Accede a la Biblioteca Esencial con más de 800.000 títulos de confianza y best-sellers en negocios, crecimiento personal y humanidades. Incluye lectura ilimitada y voz estándar de lectura en voz alta.
  • Avanzado: Perfecto para estudiantes avanzados e investigadores que necesitan acceso completo e ilimitado. Desbloquea más de 1,4 millones de libros en cientos de materias, incluidos títulos académicos y especializados. El plan Avanzado también incluye funciones avanzadas como Premium Read Aloud y Research Assistant.
Ambos planes están disponibles con ciclos de facturación mensual, cada cuatro meses o anual.
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¡Sí! Puedes usar la app de Perlego tanto en dispositivos iOS como Android para leer en cualquier momento, en cualquier lugar, incluso sin conexión. Perfecto para desplazamientos o cuando estás en movimiento.
Ten en cuenta que no podemos dar soporte a dispositivos con iOS 13 o Android 7 o versiones anteriores. Aprende más sobre el uso de la app.
Sí, puedes acceder a Filosofía sintética de las matemáticas contemporáneas de Fernando Zalamea en formato PDF o ePUB, así como a otros libros populares de Education y Teaching Mathematics. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2021
ISBN del libro electrónico
9789587197242
Categoría
Education

Tercera Parte

Esbozos de síntesis

Capítulo 8

Fragmentos de una ontología transitoria

En esta tercera parte del trabajo, elaboraremos una reflexión (filosófica, metodológica y cultural) sobre los estudios de caso que hemos presentado en la segunda parte. Por tanto, en esta tercera parte, cuando nos refiramos a las “matemáticas” (y a sus adjetivos derivados) estaremos entendiendo “matemáticas contemporáneas”, a menos que específicamente se acote lo contrario. Debe entonces observarse, de entrada, que este ensayo no puede cubrir todas las formas de hacer matemáticas, y, en particular, no contempla las prácticas peculiares de las matemáticas elementales. No se pretende así producir una suerte de filosofía matemática omniabarcadora, sino, más bien, llamar la atención sobre un muy amplio espectro matemático que rara vez ha sido tenido en cuenta en las discusiones filosóficas, y que no debería seguirse evitando. En el último capítulo intentaremos proveer una caracterización intrínseca de la diacronía 1950-2000 (abierta en los extremos) referente a las “matemáticas contemporáneas”, pero, por el momento, solo nos basaremos en los casos concretos de la práctica matemática revisados en la segunda parte. Intentaremos dar un extenso número de referencias cruzadas a esos estudios de caso; para ello, utilizaremos sistemáticamente referencias entre paréntesis cuadradas del tipo [x], [x-y] o [x, y, …] en el cuerpo del texto, que enviarán a las páginas x, x-y o x, y, … de nuestro ensayo.
Los estudios de caso de la segunda parte deben haber dejado claro que la matemática contemporánea se ocupa incesantemente de procesos de tránsito dentro del pensamiento exacto, con múltiples redes de contrastación, tanto interna como externa, para esos procesos. De allí resulta inmediatamente que las preguntas sobre el contenido y el lugar de los objetos matemáticos –el “qué” y el “dónde” ontológicos– con los cuales pretendemos describir y situar esos objetos, no pueden tener respuestas absolutas y no pueden fijarse por adelantado. La relatividad del “qué” y del “dónde” son imprescindibles en las matemáticas contemporáneas, en las que todo tiende a ser transformación y fluxión. En ese sentido, el gran paradigma de la obra de Grothendieck, con su concepción profunda de una matemática relativa [81] entreverada por toda suerte de cambios de base dentro de topos muy generales [81-82], merece entenderse plenamente como un “giro einsteiniano” en la matemática. Como hemos visto, se trata de una visión que se ramifica en toda la matemática de la época, y que puede dar lugar también a un verdadero giro einsteiniano en la filosofía de la matemática.
Ahora bien, el interés de la teoría de la relatividad de Einstein consiste, una vez asumido el movimiento de los observadores, en encontrar adecuados invariantes (ya no euclidianos o galileicos) detrás de ese movimiento. Similarmente, el interés de una matemática relativa a la Grothendieck consiste, una vez asumido el tránsito de los objetos matemáticos, en encontrar adecuados invariantes (ya no elementales o clásicos) detrás de ese tránsito. Este es el caso de múltiples situaciones arqueales dentro de la matemática que hemos venido revisando: motivos [83], teoría pcf [114], alegorías intermedias [138], alternativa extendida de Zilber [145], h-principio [149], etc. Un relativismo escéptico, que lleve a la desorientación y que permita una isotropía de los valores, al estilo de algunos subrelativismos posmodernos o del mal afamado pensiero debole, se encuentra entonces muy alejado de los proyectos einsteiniano o grothendickiano, donde, aunque no puedan existir fundamentos absolutos u objetos fijos, no todo resulta ser equiparable o equivalente, y donde pueden calcularse estructuras arqueales correlativas –es decir, invariantes con respecto a un contexto dado y a una serie dada de correlaciones– que permiten justamente detectar y reintegrar las diferencias.
El primer punto de importancia en la especificación del “qué” son los objetos matemáticos consiste en tomarse realmente en serio la relatividad y el tránsito dentro de la matemática contemporánea. En este ámbito, los objetos dejan de ser fijos, estables, clásicos, bien fundamentados –en suma “unos”– y se acercan, más bien, a lo movible, lo inestable, lo no clásico, lo fundamentado solo contextualmente–en suma lo “múltiple”–. La multiplicidad subyace por doquier en el tránsito contemporáneo, y los objetos de la matemática se convierten básicamente en redes y procesos. No existen “entes” determinados, sólidamente situados en un universo absoluto, firme y rocoso, sino, más bien, redes sígnicas complejas que se entrelazan entre sí en diversos universos relativos, plásticos y fluidos. Esas “redes sígnicas complejas”, en las que se constituyen los objetos matemáticos, contemplan una multitud de niveles, y ningún nivel fijo determinado agota la riqueza del objeto (red).
Esto es claro, por ejemplo, con el “objeto” matemático grupo; hemos visto cómo ese objeto aparece y captura información dispar (bajo los más diversos teoremas de representación) en los ámbitos más distantes de la matemática: grupos de homología y cohomología [82-84, 102], grupos de Galois [86, 88, 128], acciones de grupos [92, 103], grupos abelianos [93], grupos de homotopía [101], grupos algebraicos [105], grupo de Grothendieck-Teichmüller [128, 132], grupos de Lie [127], grupos cuánticos [127], grupos de Zilber [144], grupos hiperbólicos [149], etc. No es que nos enfrentemos entonces aquí, ontológicamente, con una estructura universal de grupo que se someta a propiedades suplementarias en cada supuesto nivel de lectura (lógico, algebraico, topológico, diferencial, etc.), sino, más bien, lo que sucede es que las diversas redes de información matemática codificadas bajo la estructura de grupo se traslapan (“presíntesis”) y se componen (“síntesis”) para transmitir coherentemente la información. No es que exista “un” objeto matemático sólido que pueda cobrar vida independientemente de los demás, en un supuesto universo primordial, sino, más bien, existen (pluralmente) redes que evolucionan incesantemente a medida que se conectan con nuevos universos de interpretación matemática. Esto es particularmente patente en las redes de desigualdades [147] que estudia Gromov, o en las redes equideductivas de teoremas [140] que ha evidenciado Simpson; los progresivos avances y adelantos en las redes van configurando el panorama global, y este modifica a su vez los entes localmente internalizados dentro del entorno global.
Dado que los objetos de la matemática no “son” sumas estables sino reintegraciones de diferenciales relativos, la pregunta acerca de su situación (“dónde viven”) adquiere un cariz casi ortogonal al planteamiento de esa misma pregunta desde una perspectiva analítica (fundamentada en la teoría de conjuntos). En efecto, si la matemática se encuentra en permanente tránsito y evolución, la situación de un objeto no puede ser más que relativa, con respecto a un ámbito (“geografía”) y con respecto al momento de evolución de ese ámbito (“historia”). Esto no hace más que refrendar la posición de Cavaillès –comprensión de la matemática como gestualidad–, la cual se repite a lo largo del siglo hasta llegar a Gromov, quien señala cómo, en el árbol de Hilbert [148], debe llegar a “admitirse la influencia de factores históricos y sociológicos”297 en su evolución.
La lectura de la matemática como una ciencia histórica va en contravía, por supuesto, de las lecturas propuestas en la filosofía analítica de las matemáticas. En esas lecturas, intemporalmente, emergen fragmentos de edificación sobre trasfondos de absoluto, codificados en los diversos “ismos” analíticos [60], con los cuales cada comentador pretende socavar posiciones contrarias y proponer su versión como la más “adecuada”, es decir, como la más potencialmente resolutiva de las problemáticas en juego. Sin embargo, curiosamente, las supuestas reconstrucciones lógicas de la “matemática” –cientos de veces estudiadas en los textos analíticos– van claramente en contra de lo que la lógica matemática ha estado descubriendo en el periodo 1950-2000. De hecho, hemos visto cómo –en la estela de Tarski (lógicas como fragmentos de álgebras y de topologías) y de Lindström (lógicas como sistemas de coordenadas de clases de modelos)– los más eminentes lógicos matemáticos de las últimas dos décadas del siglo XX (Shelah, Zilber, Hrushovski) han resaltado la emergencia de profundos núcleos geométricos subyacentes [111, 143] detrás de las manipulaciones l...

Índice

  1. Cubierta
  2. Portadilla
  3. Página legal
  4. Contenido
  5. 0. Introducción Alternativas tradicionales de la filosofía matemática y prospecto de este ensayo
  6. Primera Parte El entorno general de las matemáticas contemporáneas
  7. Segunda Parte Estudios de caso
  8. Tercera Parte Esbozos de síntesis
  9. Bibliografía
  10. Índice onomástico
  11. Índice de materias
  12. Cubierta posterior