Tercera Parte
Esbozos de síntesis
Capítulo 8
Fragmentos de una ontología transitoria
En esta tercera parte del trabajo, elaboraremos una reflexión (filosófica, metodológica y cultural) sobre los estudios de caso que hemos presentado en la segunda parte. Por tanto, en esta tercera parte, cuando nos refiramos a las “matemáticas” (y a sus adjetivos derivados) estaremos entendiendo “matemáticas contemporáneas”, a menos que específicamente se acote lo contrario. Debe entonces observarse, de entrada, que este ensayo no puede cubrir todas las formas de hacer matemáticas, y, en particular, no contempla las prácticas peculiares de las matemáticas elementales. No se pretende así producir una suerte de filosofía matemática omniabarcadora, sino, más bien, llamar la atención sobre un muy amplio espectro matemático que rara vez ha sido tenido en cuenta en las discusiones filosóficas, y que no debería seguirse evitando. En el último capítulo intentaremos proveer una caracterización intrínseca de la diacronía 1950-2000 (abierta en los extremos) referente a las “matemáticas contemporáneas”, pero, por el momento, solo nos basaremos en los casos concretos de la práctica matemática revisados en la segunda parte. Intentaremos dar un extenso número de referencias cruzadas a esos estudios de caso; para ello, utilizaremos sistemáticamente referencias entre paréntesis cuadradas del tipo [x], [x-y] o [x, y, …] en el cuerpo del texto, que enviarán a las páginas x, x-y o x, y, … de nuestro ensayo.
Los estudios de caso de la segunda parte deben haber dejado claro que la matemática contemporánea se ocupa incesantemente de procesos de tránsito dentro del pensamiento exacto, con múltiples redes de contrastación, tanto interna como externa, para esos procesos. De allí resulta inmediatamente que las preguntas sobre el contenido y el lugar de los objetos matemáticos –el “qué” y el “dónde” ontológicos– con los cuales pretendemos describir y situar esos objetos, no pueden tener respuestas absolutas y no pueden fijarse por adelantado. La relatividad del “qué” y del “dónde” son imprescindibles en las matemáticas contemporáneas, en las que todo tiende a ser transformación y fluxión. En ese sentido, el gran paradigma de la obra de Grothendieck, con su concepción profunda de una matemática relativa [81] entreverada por toda suerte de cambios de base dentro de topos muy generales [81-82], merece entenderse plenamente como un “giro einsteiniano” en la matemática. Como hemos visto, se trata de una visión que se ramifica en toda la matemática de la época, y que puede dar lugar también a un verdadero giro einsteiniano en la filosofía de la matemática.
Ahora bien, el interés de la teoría de la relatividad de Einstein consiste, una vez asumido el movimiento de los observadores, en encontrar adecuados invariantes (ya no euclidianos o galileicos) detrás de ese movimiento. Similarmente, el interés de una matemática relativa a la Grothendieck consiste, una vez asumido el tránsito de los objetos matemáticos, en encontrar adecuados invariantes (ya no elementales o clásicos) detrás de ese tránsito. Este es el caso de múltiples situaciones arqueales dentro de la matemática que hemos venido revisando: motivos [83], teoría pcf [114], alegorías intermedias [138], alternativa extendida de Zilber [145], h-principio [149], etc. Un relativismo escéptico, que lleve a la desorientación y que permita una isotropía de los valores, al estilo de algunos subrelativismos posmodernos o del mal afamado pensiero debole, se encuentra entonces muy alejado de los proyectos einsteiniano o grothendickiano, donde, aunque no puedan existir fundamentos absolutos u objetos fijos, no todo resulta ser equiparable o equivalente, y donde pueden calcularse estructuras arqueales correlativas –es decir, invariantes con respecto a un contexto dado y a una serie dada de correlaciones– que permiten justamente detectar y reintegrar las diferencias.
El primer punto de importancia en la especificación del “qué” son los objetos matemáticos consiste en tomarse realmente en serio la relatividad y el tránsito dentro de la matemática contemporánea. En este ámbito, los objetos dejan de ser fijos, estables, clásicos, bien fundamentados –en suma “unos”– y se acercan, más bien, a lo movible, lo inestable, lo no clásico, lo fundamentado solo contextualmente–en suma lo “múltiple”–. La multiplicidad subyace por doquier en el tránsito contemporáneo, y los objetos de la matemática se convierten básicamente en redes y procesos. No existen “entes” determinados, sólidamente situados en un universo absoluto, firme y rocoso, sino, más bien, redes sígnicas complejas que se entrelazan entre sí en diversos universos relativos, plásticos y fluidos. Esas “redes sígnicas complejas”, en las que se constituyen los objetos matemáticos, contemplan una multitud de niveles, y ningún nivel fijo determinado agota la riqueza del objeto (red).
Esto es claro, por ejemplo, con el “objeto” matemático grupo; hemos visto cómo ese objeto aparece y captura información dispar (bajo los más diversos teoremas de representación) en los ámbitos más distantes de la matemática: grupos de homología y cohomología [82-84, 102], grupos de Galois [86, 88, 128], acciones de grupos [92, 103], grupos abelianos [93], grupos de homotopía [101], grupos algebraicos [105], grupo de Grothendieck-Teichmüller [128, 132], grupos de Lie [127], grupos cuánticos [127], grupos de Zilber [144], grupos hiperbólicos [149], etc. No es que nos enfrentemos entonces aquí, ontológicamente, con una estructura universal de grupo que se someta a propiedades suplementarias en cada supuesto nivel de lectura (lógico, algebraico, topológico, diferencial, etc.), sino, más bien, lo que sucede es que las diversas redes de información matemática codificadas bajo la estructura de grupo se traslapan (“presíntesis”) y se componen (“síntesis”) para transmitir coherentemente la información. No es que exista “un” objeto matemático sólido que pueda cobrar vida independientemente de los demás, en un supuesto universo primordial, sino, más bien, existen (pluralmente) redes que evolucionan incesantemente a medida que se conectan con nuevos universos de interpretación matemática. Esto es particularmente patente en las redes de desigualdades [147] que estudia Gromov, o en las redes equideductivas de teoremas [140] que ha evidenciado Simpson; los progresivos avances y adelantos en las redes van configurando el panorama global, y este modifica a su vez los entes localmente internalizados dentro del entorno global.
Dado que los objetos de la matemática no “son” sumas estables sino reintegraciones de diferenciales relativos, la pregunta acerca de su situación (“dónde viven”) adquiere un cariz casi ortogonal al planteamiento de esa misma pregunta desde una perspectiva analítica (fundamentada en la teoría de conjuntos). En efecto, si la matemática se encuentra en permanente tránsito y evolución, la situación de un objeto no puede ser más que relativa, con respecto a un ámbito (“geografía”) y con respecto al momento de evolución de ese ámbito (“historia”). Esto no hace más que refrendar la posición de Cavaillès –comprensión de la matemática como gestualidad–, la cual se repite a lo largo del siglo hasta llegar a Gromov, quien señala cómo, en el árbol de Hilbert [148], debe llegar a “admitirse la influencia de factores históricos y sociológicos”297 en su evolución.
La lectura de la matemática como una ciencia histórica va en contravía, por supuesto, de las lecturas propuestas en la filosofía analítica de las matemáticas. En esas lecturas, intemporalmente, emergen fragmentos de edificación sobre trasfondos de absoluto, codificados en los diversos “ismos” analíticos [60], con los cuales cada comentador pretende socavar posiciones contrarias y proponer su versión como la más “adecuada”, es decir, como la más potencialmente resolutiva de las problemáticas en juego. Sin embargo, curiosamente, las supuestas reconstrucciones lógicas de la “matemática” –cientos de veces estudiadas en los textos analíticos– van claramente en contra de lo que la lógica matemática ha estado descubriendo en el periodo 1950-2000. De hecho, hemos visto cómo –en la estela de Tarski (lógicas como fragmentos de álgebras y de topologías) y de Lindström (lógicas como sistemas de coordenadas de clases de modelos)– los más eminentes lógicos matemáticos de las últimas dos décadas del siglo XX (Shelah, Zilber, Hrushovski) han resaltado la emergencia de profundos núcleos geométricos subyacentes [111, 143] detrás de las manipulaciones l...