Human Metabolism
eBook - ePub

Human Metabolism

A Regulatory Perspective

Keith N. Frayn, Rhys Evans

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Human Metabolism

A Regulatory Perspective

Keith N. Frayn, Rhys Evans

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

The updated bestselling guide to human metabolism and metabolic regulation

The revised and comprehensively updated new edition of Human Metabolism (formerly Metabolic Regulation – A Human Perspective ) offers a current and integrated review of metabolism and metabolic regulation. The authors explain difficult concepts in clear and concise terms in order to provide an accessible and essential guide to the topic. This comprehensive text covers a wide range of topics such as energy balance, body weight regulation, exercise, and how the body copes with extreme situations, and illustrates how metabolic regulation allows the human body to adapt to many different conditions.

This fourth edition has been revised with a new full colour text design and helpful illustrations that illuminate the regulatory mechanisms by which all cells control the metabolic processes necessary for life. The text includes chapter summaries and additional explanatory text that help to clarify the information presented. In addition, the newly revised edition includes more content on metabolic pathways and metabolic diseases. This important resource:

  • Is a valuable tool for scientists, practitioners and students across a broad range of health sciences including medicine, biochemistry, nutrition, dietetics, sports science and nursing
  • Includes a full colour text filled with illustrations and additional diagrams to aid understanding
  • Offers a companion website with additional learning and teaching resources.

Written for students of medicine, biochemistry, nutrition, dietetics, sports science and nursing, Human Metabolism has been revised and updated to provide a comprehensive review of metabolism and metabolic regulation.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Human Metabolism un PDF/ePUB en línea?
Sí, puedes acceder a Human Metabolism de Keith N. Frayn, Rhys Evans en formato PDF o ePUB, así como a otros libros populares de Medicina y Endocrinología y metabolismo. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2019
ISBN
9781119331469
Edición
4
Categoría
Medicina

CHAPTER 1
The underlying principles of human metabolism

Key learning points

  • We eat food. We expend energy doing exercise, sleeping, just being. What happens to the food between it entering our mouths and its being used for energy? That’s what metabolism (at least, so far as this book is concerned) is all about.
  • In order to cover the periods when we are not eating, we need to store metabolic fuels. We store fuel as fat (triacylglycerol) and as carbohydrate (glycogen). Fat provides considerably more energy per gram stored. Proteins are not stored specifically as energy reserves but they may be utilised as such under certain conditions. We must regulate both the storage and mobilisation of energy to match intake to expenditure. That is what we will refer to as metabolic regulation.
  • Molecules involved in metabolism differ in an important property: polarity. Polar molecules (those with some degree of electrical charge) mix with water (which is also polar); non-polar molecules, which include most lipids (fatty substances), usually don’t mix with water. This has profound implications for the way they are handled in the body. They also differ in the amount of energy they contain, affecting their efficiency as fuels.
  • Some molecules have both polar and non-polar aspects: they are said to be amphipathic. They can form a bridge between polar and non-polar regions. Amphipathic phospholipid molecules can group together to form membranes, such as cell membranes.
  • Energy is derived from metabolic substrates derived from food-stuffs principally by oxidation, a chemical process involving electron transfer from electron donor (reducing agent) to electron acceptor (oxidising agent), the final electron acceptor being oxygen.
  • The different organs in the body have their own characteristic patterns of metabolism. Substrates flow between them in the bloodstream (circulation). Larger blood vessels divide into fine vessels (capillaries) within the tissues, so that the distances that molecules have to diffuse to or from the cells are relatively small (more detail in Chapter 3).
  • The different classes of metabolic substrates have characteristic chemical properties; by utilising all three types of metabolic substrates derived from the three major food energy groups (carbohydrates, fats, and proteins) energy storage (anabolism) and release (catabolism) in many physiological conditions is achieved.
  • General features of metabolism include synthesis and breakdown of substrates, and complete breakdown to release energy by oxidation. The tricarboxylic acid cycle (TCA cycle) is the central cellular mechanism for substrate oxidation to H2O and CO2, with consumption of O2. It operates within mitochondria.
  • Carbohydrate metabolism centres around the sugar glucose. Carbohydrate metabolic pathways include conversion to glycogen and its reverse, glucose breakdown and oxidation, glucose conversion to lipid, and synthesis of glucose (gluconeogenesis).
  • Lipid metabolism for energy centres on the interconversion of fatty acids and triacylglycerol. Triacylglycerol synthesis involves esterification of fatty acids with glycerol; triacylglycerol breakdown (lipolysis) involves liberation of fatty acids and glycerol from stored triacylglycerol. The oxidation of fatty acids occurs through a pathway known as β-oxidation.
  • Amino acid metabolism involves incorporation of amino acids into protein, and its reverse (protein synthesis and breakdown), and further metabolism of the amino acids, either to convert them to other substrates (e.g. lipids) or final oxidation. The nitrogen component of amino acids is disposed of by conversion to urea in the liver.

1.1 Metabolism in perspective

To many students, metabolism sounds a dull subject. It involves learning pathways with intermediates with difficult names and even more difficult formulae. Metabolic regulation may sound even worse. It involves not just remembering the pathways, but remembering what the enzymes are called, what affects them and how. This book is not simply a repetition of the molecular details of metabolic pathways. Rather, it is an attempt to put metabolism and metabolic regulation together into a physiological context, to help the reader to see the relevance of these subjects. Once their relevance to everyday life becomes apparent, then the details will become easier, and more interesting, to grasp.
This book is written from a human perspective because, as humans, it is natural for us to find our own metabolism interesting – and very important for understanding human health and disease. Nevertheless, many aspects of metabolism and its regulation that are discussed are common to other mammals. Some mammals, such as ruminants, have rather specialised patterns of digestion and absorption of energy; such aspects will not be covered in this book.
Metabolism might be defined as the biochemical reactions involved in converting foodstuffs into fuel. (There are other aspects, but we will concentrate on this one.) As we shall shortly see, that is not a constant process: ‘flow’ through the metabolic pathways needs to change with time. An important aspect of these pathways is therefore the ability to direct metabolic products into storage, then retrieve them from storage as appropriate. In this chapter we shall give an overview of the major pathways involved in carbohydrate, lipid, and protein metabolism. In later chapters we shall see that these pathways operate within specific tissues – or sometimes between tissues – and not all cells carry out the same set of metabolic reactions. We intend to give enough detail of metabolic pathways that a student will be able to understand them, but inevitably a more detailed biochemistry textbook will provide more. We shall concentrate upon understanding how these pathways operate in human terms, and how they are regulated.
Now we have mentioned metabolic regulation, so we should ask: why is it necessary? An analogy here is with mechanical devices, which require an input of energy, and convert this energy to a different and more useful form. The waterwheel is a simple example. This device takes the potential energy of water in a reservoir – the mill-pond – and converts it into mechanical energy which can be used for turning machinery, for instance, to grind corn. As long as the water flows, its energy is extracted, and useful work is done. If the water stops, the wheel stops. A motor vehicle has a different pattern of energy intake and energy output (Figure 1.1). Energy is taken in very spasmodically – only when the driver stops at a filling station. Energy is converted into useful work (acceleration and motion) with an entirely different pattern. A long journey might be undertaken without any energy intake. Clearly, the difference from the waterwheel lies in the presence of a storage device – the fuel tank. But the fuel tank alone is not sufficient: there must also be a control mechanism to regulate the flow of energy from the store to the useful-work-producing device (i.e. the engine). In this case, the regulator is in part a human brain deciding when to move, and in part a mechanical system controlling the flow of fuel.
Two graphs showing the rates of energy intake and output for a motor vehicle. The first graph shows that the rate of intake is zero except for periods in a filling station, when it is suddenly very high. The second graph shows that rate of output is zero while the car is parked with the engine off; it increases as the car is driven to the filling station, and is relatively high during a journey. When totalled up over a long period, the areas under the two curves must be equal. That is, energy intake equals energy output, except for any difference in the amounts of fuel in the tank before and after.
Figure 1.1 Rates of energy intake and output for a motor vehicle. The rate of intake (top panel) is zero except for periods in a filling station, when it is suddenly very high. (Notice that the scales are different for intake and output.) The rate of output is zero while the car is parked with the engine off; it increases as the car is driven to the filling station, and is relatively high during a journey. When totalled up over a long period, the areas under the two curves must be equal (energy intake = energy output) – except for any difference in the amounts of fuel in the tank before and after.
What d...

Índice