Mechanical Vibrations
eBook - ePub

Mechanical Vibrations

J. P. Den Hartog

  1. 464 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Mechanical Vibrations

J. P. Den Hartog

Dettagli del libro
Anteprima del libro
Indice dei contenuti

Informazioni sul libro

This classic textbook by J. P. Den Hartog, retired professor of mechanical engineering at MIT, reflects the author's unique ability to combine the scholarly insight of a distinguished scientist with the practical, problem-solving orientation of an experienced industrial engineer. Although mathematics plays a role in the subject, Den Hartog employs the simplest possible mathematical approaches. His lucid explanations of complex problems are presented in a direct style and supported by illustrative models. Numerous figures in the text enhance its value as a basic foundation in a field which Den Hartog calls `a necessary tool for almost every mechanical engineer.` The author examines such topics as the kinematics of vibration (including harmonic motions and non-harmonic periodic motions), degrees of freedom, gyroscopic effects, relaxation oscillations, Rayleigh's method, natural frequencies of torsional vibration, Karman vortices, and systems with variable elasticity. Drawing on his experience as an engineer in private industry and in the U.S. Navy's Bureau of Ships, Den Hartog applies theory to practice, discussing the effects of vibrations on turbines, electrical machines, helicopter rotors and airplane wings, diesel engines and electrical transmission lines.
As a special aid to classroom work or self-study, this practical text includes an extensive selection of 233 problems and answers that test the student's mastery of every section of the book. In addition, a highly useful Appendix contains `A Collection of Formulas` for determining the load per inch deflection of linear springs, the load per radian rotation of rotational springs, the natural frequencies of simple systems, the longitudinal and torsional vibration of uniform beams, the transverse or bending vibrations of uniform beams, and the vibrations of rings, membranes, and plates.
When Mechanical Vibrations was first published in 1934, it was a pioneering work in a field which had just been introduced in America's technical schools. In fact, the author wrote it to assist him in teaching the subject at Harvard. `During the life of the book,` he says, `from 1934 on, the art and science of engineering has grown at an astonishing rate and the subject of vibration has expanded with it.` Professor Den Hartog's constant revisions have kept his book at the forefront of this vital subject, as useful today as its earlier versions were to students of the past.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Mechanical Vibrations è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Mechanical Vibrations di J. P. Den Hartog in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Civil Engineering. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.


1.1 Definitions. A vibration in its general sense is a periodic motion, i.e., a motion which repeats itself in all its particulars after a certain interval of time, called the period of the vibration and usually designated by the symbol T. A plot of the displacement x against the time t may be a curve of considerable complication. As an example, Fig. 1.1a shows the motion curve observed on the bearing pedestal of a steam turbine.
The simplest kind of periodic motion is a harmonic motion; in it the relation between x and t may be expressed by
as shown in Fig. 1.1b, representing the small oscillations of a simple pendulum. The maximum value of the displacement is x0, called the amplitude of the vibration.
FIG. 1.1. A periodic and a harmonic function, showing the period T and the amplitude x0.
The period T usually is measured in seconds; its reciprocal f = 1/T is the frequency of the vibration, measured in cycles per second. In some publications this is abbreviated as cyps and pronounced as it is written. In the German literature cycles per second are generally called Hertz in honor of the first experimenter with radio waves (which are electric vibrations).
In Eq. (1.1) there appears the symbol ω, which is known as the circular frequency and is measured in radians per second. This rather unfortunate name has become familiar on account of the properties of the vector representation, which will be discussed in the next section. The relations between ω, f, and T are as follows. From Eq. (1.1) and Fig. 1.1b it is clear that a full cycle of the vibration takes place when ωt has passed through 360 deg. or 2π radians. Then the sine function resumes its previous values. Thus, when ωt = 2π, the time interval t is equal to the period T or
Since f is the reciprocal of T,
For rotating machinery the frequency is often expressed in vibrations per minute, denoted as v.p.m. = 30ω/π.
FIG. 1.2. Two harmonic motions including the phase angle φ.
In a harmonic motion for which the displacement is given by x = x0 sin ωt, the velocity is found by differentiating the displacement with respect to time,
so that the velocity is also harmonic and has a maximum value ωx0.
The acceleration is
also harmonic and with the maximum value ω2x0.
Consider two vibrations given by the expressions x1 = a sin ωt and x2 = b sin (ωt + φ) which are shown in Fig. 1.2, plotted against ωt as abscissa. Owing to the presence of the quantity φ, the two vibrations do not attain their maximum displacements at the same time, but the one is φ/ω sec. behind the other. The quantity φ is known as the phase angle or phase difference between the two vibrations. It is seen that the two motions have the same ω and consequently the same frequency f. A phase angle has meaning only for two motions of the same frequency: if the frequencies are different, phase angle is meaningless.
Example: A body, suspended from a spring, vibrates vertically up and down between two positions 1 and 1½ in. above the ground. During each second it reaches the top position (1½ in. above ground) twenty times. What are T, f, ω, and x0?
Solution: x0 = 1/4 in., T = 1⁄20 sec, f = 20 cycles per second, and ω = 2πf = 126 radians per second.
1.2. The Vector Method of Representing Vibrations. The motion of a vibrating particle can be conveniently represented by means of a rotating vector. Let the vector
(Fig. 1.3) rotate with uniform angular velocity ω in a counterclockwise direction. When time is reckoned from the horizontal position of the vector as a starting point, the horizontal projection of the vector can be written as
a cos ωt
and the vertical projection as
a sin ωt
FIG. 1.3. A harmonic vibration represented by the horizontal projection of a rotating vector.
Either projection can be taken to represent a reciprocating motion; in the following discussion, however, we shall consider only the horizontal projection.
This representation has given rise to the name circular frequency for ω. The quantity ω, being the angular speed of the vector, is measured in radians per second; the frequency f in this case is measured in revolutio...

Indice dei contenuti

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface
  5. Content
  6. List of Symbols
  7. Chapter 1. Kinematics Of Vibration
  8. Chapter 2. The Single-Degree-Of-Freedom System
  9. Chapter 3. Two Degrees Of Freedom
  10. Chapter 4. Many Degrees Of Freedom
  11. Chapter 5. Multicylinder Engines
  12. Chapter 6. Rotating Machinery
  13. Chapter 7. Self-Excited Vibrations
  14. Chapter 8. Systems With Variable Or Non-Linear Characteristics
  15. Problems
  16. Answers To Problems
  17. Appendix: A Collection Of Formulas
  18. Index