Practical Conic Sections
eBook - ePub

Practical Conic Sections

The Geometric Properties of Ellipses, Parabolas and Hyperbolas

J. W. Downs

Condividi libro
  1. 112 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Practical Conic Sections

The Geometric Properties of Ellipses, Parabolas and Hyperbolas

J. W. Downs

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Illustrated with interesting examples from everyday life, this text shows how to create ellipses, parabolas, and hyperbolas and presents fascinating historical background on their ancient origins. The text starts with a discussion of techniques for generating the conic curves, showing how to create accurate depictions of large or small conic curves and describing their reflective properties, from light in telescopes to sound in microphones and amplifiers. It further defines the role of curves in the construction of auditoriums, antennas, lamps, and numerous other design applications. Only a basic knowledge of plane geometry needed; suitable for undergraduate courses. 1993 edition. 98 figures.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Practical Conic Sections è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Practical Conic Sections di J. W. Downs in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Mathematics e Analytic Geometry. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2012
ISBN
9780486148885

CHAPTER ONE

DERIVING ELLIPSES

METHOD 1

At the risk of being obvious, ellipses (and the other conic sections) may be obtained by cutting up (sectioning) a cone. Although this may not be the most convenient way of obtaining an ellipse, it must be listed as a legitimate means of deriving one. The intersection of a cone and a plane that passes completely through the cone is an ellipse. Ellipses are also generated at the intersection of a cylinder and a plane, but a cylinder must be considered to be a part of a special kind of cone having an apex angle of 0°. Figure 1-1 shows the shadow of a ball illuminated by a point source of light. The shadow cast on the table is an ellipse, with the ball touching the surface at one focus. (The shadow of a sphere is always conical, regardless of the angle from which the sphere is illuminated.)
FIGURE 1-1

An elliptical shadow cast by a ball. The ball rests on one focus of the ellipse (proof given in Chapter 9).
e9780486148885_i0009.webp

METHOD 2

Ellipses occur naturally in free orbital motion. Such motion ranges from planets having nearly circular orbits to the extremely eccentric orbits of recurrent comets.

METHOD 3

For those who enjoy working algebra problems and putting dots on graph paper, the equation
e9780486148885_i0010.webp
describes an ellipse in the xy plane with major and minor axes of length 2a and 2b. The standard nomenclature for an ellipse described in analytical geometry is shown in Figure 1-2.
FIGURE 1-2
e9780486148885_i0011.webp

METHOD 4

Ellipses may be defined as the locus of a point, the sum of whose distances to two fixed points is a constant. Put into practice, this method resolves itself to the two-pins-and-a-string method of constructing ellipses. Two pins are placed at the foci and a loop of string is adjusted to a length that allows the pencil point to touch a point on the ellipse. This point is usually at the major or minor axis intercept, but it may be any point known to be on the ellipse. See Figure 1-3.
FIGURE 1-3
e9780486148885_i0012.webp
This is a very practical way of drawing ellipses, and it is often the most convenient approach to be used for laying out large ellipses, such as elliptical flower beds or large outdoor signs.

It is possible to accomplish the same thing without the use of pins and string. Going back to the definition of an ellipse as the locus of a point whose distance to two fixed points is a constant, we should establish the fact that this constant is always equal to the length of the major axis of the ellipse. If we establish the major axis on a line and mark off arbitrary points along this line, we may take the distances (with a compass) from point A to one of these points and swing an arc from F1, as shown in Figure 1-4. From point B we adjust the compass to measure the length from B to the same point and swing another arc from F2. The intersection of the two arcs will be a point on the ellipse. By repeating this operation several times and connecting these points of intersection, we may draw the ellipse. Although this appears to be a practical way to draw an ellipse, in practice it becomes difficult to draw through the points as we approach the ends of the ellipse.
FIGURE 1-4
e9780486148885_i0013.webp
It is important to remember that the constant is always equal to the length of the major axis of the ellipse. In Chapter 2 we shall see that the constant involved in generating hyperbolas is also equal to the major axis (the distance between vertices) of a pair of hyperbolas, the only difference being that we subtract the two distances instead of adding them when determining points.

METHOD 5

The trammel method is an easy way to draw ellipses; it requires no pins or construction lines except the major and minor axes. For this reason it is frequently preferred by drafters. Two approaches may be used. In Figure 1-5(a) one-half the lengths of the major and minor axes are marked off on a piece of cardboard or plastic and placed over two lines drawn perpendicular to each other. The point P will be on the ellipse as long as the points M and N are on the x and y axes. Similarly, Figure 1-5(b) shows a trammel marked with one-half the minor axis inside one-half the major axis. Again, if the points M and N are positioned over the axis lines, point P will fall on the ellipse.
FIGURE 1-5
e9780486148885_i0014.webp
A mechanical device known as an ellipsograph, or the trammel of Archimedes, is used for drawing ellipses and is shown in Figure 1-6. The pen (P) is shown at the end of the movable arm, but any point on the arm will describe an ellipse. Note that this method is no different from the method shown in Figure 1-5(b) but is presented in a more practical mechanical form. The point P will cross the major axis when M is centered and will cross the minor axis when N is centered.
FIGURE 1-6

Ellipsograph.
e9780486148885_i0015.webp

METHOD 6

The parallelogram method starts with a pair of intersecting axes centered on a parallelogram that is to circumscribe the ellipse. Divide AO and AE into the same number of equal parts, as shown in Figure 1-7. From D, draw lines through points 1, 2, and 3 on AO; and from C, draw lines through points 1, 2, and 3 on AE. The intersections of these lines will be points on the ellipse. Although any parallelogram will work, it is more convenient if the parallelogram is a rectangle; otherwise the axes will not correspond to the major and minor axes of the ellipse.
FIGURE 1-7
e9780486148885_i0016.webp

METHOD 7

The Directing Circle method has several advantages over the...

Indice dei contenuti