A Heat Transfer Textbook
eBook - ePub

A Heat Transfer Textbook

Fourth Edition

John H Lienhard, John H Lienhard

Condividi libro
  1. 768 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

A Heat Transfer Textbook

Fourth Edition

John H Lienhard, John H Lienhard

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' insight into related phenomena. Three introductory chapters form a minicourse in heat transfer, covering all of the subjects discussed in detail in subsequent chapters. This unique and effective feature introduces heat exchangers early in the development, rather than at the end. The authors also present a novel and simplified method for dimensional analysis, and they capitalize on the similarity of natural convection and film condensation to develop these two topics in a parallel manner. Worked examples and end-of-chapter exercises appear throughout the book, along with well-drawn, illuminating figures.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
A Heat Transfer Textbook è disponibile online in formato PDF/ePub?
Sì, puoi accedere a A Heat Transfer Textbook di John H Lienhard, John H Lienhard in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Tecnologia e ingegneria e Scienze applicate. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2013
ISBN
9780486318370

PART III

CONVECTIVE HEAT TRANSFER

6. Laminar and turbulent boundary layers

In cold weather, if the air is calm, we are not so much chilled as when there is wind along with the cold; for in calm weather, our clothes and the air entangled in them receive heat from our bodies; this heat...brings them nearer than the surrounding air to the temperature of our skin. But in windy weather, this heat is prevented...from accumulating; the cold air, by its impulse...both cools our clothes faster and carries away the warm air that was entangled in them.
notes onThe General Effects of Heat”,
Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s perception about forced convection (above) represents a very correct understanding of the way forced convective cooling works. When cold air moves past a warm body, it constantly sweeps away warm air that has become, as Black put it, “entangled” with the body and replaces it with cold air. In this chapter we learn to form analytical descriptions of these convective heating (or cooling) processes.
Our aim is to predict h and
image
, and it is clear that such predictions must begin in the motion of fluid around the bodies that they heat or cool. Once we understand these fluid motions, we can begin the process of predicting how much heat they add or remove.

Flow boundary layer

Fluids flowing past solid bodies adhere to them, so a region of variable velocity must be built up between the body and the free fluid stream, as indicated in Fig. 6.1. This region is called a boundary layer, which we abbreviate as b.l. The b.l. has a thickness, δ. The boundary layer thickness is arbitrarily defined as the distance from the wall at which the flow velocity approaches to within 1% of u. The boundary layer is normally very thin in comparison with the dimensions of the body immersed in the flow.1
image
Figure 6.1 A boundary layer of thickness δ.
The first step we must take before we can predict h is the mathematical description of the boundary layer. This was first done by Prandtl2 (see Fig. 6.2) and his students, starting in 1904, and it depended upon simplifications he could make after he recognized how thin the layer must be.
The dimensional functional equation for the boundary layer thickness on a flat surface is
image
where χ is the length along the surface and ρ and μ are the fluid density in kg/m3 and the dynamic viscosity in kg/m.s. We have five variables in kg, m, and s, so we anticipate two pi-groups:
image
Figure 6.2 Ludwig Prandtl (1875–1953). (Courtesy of Appl. Mech. Rev. [6.1])
image
where ν is the kinematic viscosity μ/ρ and Reχ is called the Reynolds number. It characterizes the relative influences of inertial and viscous forces in a fluid problem. The subscript on Re—χ in this case—tells what length it is based upon.
We discover shortly that the actual form of eqn. (6.1) for a flat surface, where u remains constant, is
image
which means that if the velocity is great...

Indice dei contenuti