Basic Abstract Algebra
eBook - ePub

Basic Abstract Algebra

For Graduate Students and Advanced Undergraduates

Robert B. Ash

Condividi libro
  1. 432 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Basic Abstract Algebra

For Graduate Students and Advanced Undergraduates

Robert B. Ash

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Geared toward upper-level undergraduates and graduate students, this text surveys fundamental algebraic structures and maps between these structures. Its techniques are used in many areas of mathematics, with applications to physics, engineering, and computer science as well. Author Robert B. Ash, a Professor of Mathematics at the University of Illinois, focuses on intuitive thinking. He also conveys the intrinsic beauty of abstract algebra while keeping the proofs as brief and clear as possible.
The early chapters provide students with background by investigating the basic properties of groups, rings, fields, and modules. Later chapters examine the relations between groups and sets, the fundamental theorem of Galois theory, and the results and methods of abstract algebra in terms of algebraic number theory, algebraic geometry, noncommutative algebra, and homological algebra, including categories and functors. An extensive supplement to the text delves much further into homological algebra than most introductory texts, offering applications-oriented results. Solutions to all problems appear in the text.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Basic Abstract Algebra è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Basic Abstract Algebra di Robert B. Ash in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Mathématiques e Algèbre abstraite. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2013
ISBN
9780486318110
Chapter 1
Group Fundamentals
1.1 Groups and Subgroups
1.1.1 Definition
A group is a nonempty set G on which there is defined a binary operation (a, b) → ab satisfying the following properties.
Closure: If a and b belong to G, then ab is also in G;
Associativity: a(bc) = (ab)c for all a, b, cG;
Identity: There is an element 1 ∈ G such that a1 = 1a = a for all a in G;
Inverse: If a is in G, then there is an element a−1 in G such that aa−1 = a−1a = 1.
A group G is abelian if the binary operation is commutative, i.e., ab = ba for all a, b in G. In this case the binary operation is often written additively ((a, b) → a + b), with the identity written as 0 rather than 1.
There are some very familiar examples of abelian groups under addition, namely the integers
, the rationals
, the real numbers
, the complex numers
, and the integers
m modulo m. Nonabelian groups will begin to appear in the next section.
The associative law generalizes to products of any finite number of elements, for example, (ab)(cde) = a(bcd)e. A formal proof can be given by induction. If two people A and B form a1an in different ways, the last multiplication performed by A might look like (a1ai)(ai+1an), and the last multiplication by B might be (a1aj)(aj+1an). But if (without loss of generality) i < j, then (induction hypothesis)
image
and
image
.
By the n = 3 case, i.e., the associative law as stated in the definition of a group, the products computed by A and B are the same.
The identity is unique (1′ = 1′1 = 1), as is the inverse of any given element (if b and b′ are inverses of a, then b = 1b = (ba)b = b′(ab) = b′1 = b′). Exactly the same argument shows that if b is a right inverse, and a a left inverse, of a, then b = b′.
1.1.2 Definitions and Comments
A subgroup H of a group G is a nonempty subset of G that forms a group under the binary operation of G. Equivalently, H is a nonempty subset of G such that if a and b belong to H, so does ab−1. (Note that 1 = aa−1H; also, ab = a((b−1)−1) ∈ H.)
If A is any subset of a group G, the subgroup generated by A is the smallest subgroup containing A, often denoted by 〈A〉. Formally, 〈A〉 is the intersection of all subgroups containing A. More explicitly, 〈A〉 consists of all finite products a1an, n = 1, 2, …, where for each i, either ai or
image
belongs to A. To see this, note that all such products belong to any subgroup containing A, and the collection of all such products forms a subgroup. In checking that the inverse of an element of 〈A〉 also belongs to 〈A〉, we use the fact that
image
which is verified directly:
image
.
1.1.3 Definitions and Comments
The groups G1 and G2 are said to be isomorphic if there is a bijection f : G1G2 that preserves the group operation, in other words, f(ab) = f(a) f(b). Isomorphic groups are essentially the same; they differ only notationally. Here is a simple example. A group G is cyclic if G is generated by a single element: G = 〈a〉. A finite cyclic g...

Indice dei contenuti