Crossing Numbers of Graphs
eBook - ePub

Crossing Numbers of Graphs

Marcus Schaefer

Condividi libro
  1. 350 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Crossing Numbers of Graphs

Marcus Schaefer

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science.

The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory.

  • Aimed at graduate students and professionals in both mathematics and computer science
  • The first book of its kind devoted to the topic
  • Authored by a noted authority in crossing numbers

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Crossing Numbers of Graphs è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Crossing Numbers of Graphs di Marcus Schaefer in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Mathematics e Counting & Numeration. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
CRC Press
Anno
2018
ISBN
9781351648448
Edizione
1
Argomento
Mathematics
Part II
Crossing Number Variants
Chapter 5
The Rectilinear Crossing Number: Rectilinear and Pseudolinear Drawings
5.1 A First Look
Recall that in a rectilinear (also called geometric or straight-line) drawing of a graph, edges are realized by straight-line segments (without bends). The rectilinear crossing number, cr¯ (G), of a graph G is the smallest number of crossings in any rectilinear drawing of G. If cr¯ (G) = 0, then G is planar, and, as it turns out, the reverse is also true, a result known by many names.
Theorem 5.1 (Fary’s (Wagner’s, Stein’s) Theorem [132, 320, 347]). Every planar graph has a rectilinear embedding.
We use a simple geometric fact: every polygon of length at most 5 is starshaped; that is, it contains a point in its interior which can see all points in the polygon, in the sense that it can be connected by a straight-line segment—lying within the polygon—to any other point inside the polygon. (Triangulate the polygon; there are at most three triangles, so there must be a vertex belonging to all triangles; that vertex, and points in a wedge close to it will do.)
Proof. We prove by induction on the number of vertices that every plane graph has a rectilinear embedding with the same rotation scheme. The result is clear for graphs with n ≤ 3 vertices, so we can assume that there are at least 4 vertices. By Euler’s formula, Corollary A.5, there is a vertex v of degree at most 5. Inductively find a rectilinear embedding of Gv. We need to argue that we can add v back into the face from which it was removed (the face still exists in the rectilinear embedding, since we maintained the rotation system). But this is possible by the geometric fact we outlined before the proof.
The proof establishes more than we claimed: the rectilinear embedding we construct is isomorphic to the original embedding. A drawing which is isomorphic to a rectilinear drawing is called stretchable. So Fary’s theorem states that every plane embedding is stretchable. If the graph is 3-connected, we can even guarantee that the rectilinear embedding is strictly convex, that is, all inner faces are strictly convex polygons (all inner angles strictly less than π).1 This is Tutte’s celebrated spring theorem.
Theorem 5.2 (Tutte [338]). Every plane, 3-connected graph is isomorphic to a strictly convex, rectilinear embedding.
Tutte’s result implies Fary’s theorem (Exercise (5.1)), but its proof is more intricate; we recommend [333]. Does Fary’s Theorem remain true in the presence of crossings? The answer is a qualified yes.
Theorem 5.3 (Bienstock and Dean [65]). We have cr¯ (G) = cr(G) if cr(G) ≤ 3.
The strategy for the proof is simple: add crossing-free edges to G to ensure that G without the crossing edges is a plane, 3-connected graph. Take a strictly convex embedding of this graph, and reinsert the crossing edges. This approach works for cr(G) = 1 (c...

Indice dei contenuti