MORE! Teaching Fractions and Ratios for Understanding
eBook - ePub

MORE! Teaching Fractions and Ratios for Understanding

In-Depth Discussion and Reasoning Activities

Susan J. Lamon

Condividi libro
  1. 160 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

MORE! Teaching Fractions and Ratios for Understanding

In-Depth Discussion and Reasoning Activities

Susan J. Lamon

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

More is not an answer key but a resource that provides the scaffolding for the groundbreaking approach to fraction and ratio instruction presented in its companion text, Teaching Fractions and Ratios. Keeping the focus on the reasoning needed to properly understand and teach rational numbers, More shows teachers how to engage in powerful ways of thinking so that they can, in turn, enhance the mathematical education of their students.

Like its companion text, More has been heavily expanded and reorganized, including even more student work, templates for key manipulatives, and an emphasis on applications to everyday life. Based on the content chapters in Teaching Fractions and Ratios, each chapter includes:



  • In-depth Discussions of selected problems and their solutions.


  • Supplementary Activities and a collection of challenging problems involving fractions.


  • Praxis Preparation Questions geared to the content of each chapter.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
MORE! Teaching Fractions and Ratios for Understanding è disponibile online in formato PDF/ePub?
Sì, puoi accedere a MORE! Teaching Fractions and Ratios for Understanding di Susan J. Lamon in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Pedagogía e Enseñanza de matemáticas. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Routledge
Anno
2013
ISBN
9781136632068
Edizione
3
Argomento
Pedagogía

CHAPTER 1

Proportional Reasoning: An Overview

GETTING STARTED

1. If 6 men can build a house in 3 days, then to shorten the time, you will need more men on the job. As the number of men goes up, the number of days goes down. Six men build
images
of the house in one day, so 12 men could build
images
of the house in one day, and 18 men could build
images
of one whole house in a day (assuming that all of the men do an honest day's work). This means that it would take 3 times as many men to complete the job in
images
the time.
2. If 6 chocolates cost $0.93, then 12 would cost $1.86 and 24 would cost $3.72. If 6 cost $0.93, then 2 cost $0.31. The cost of 22 candies is $0.31 less than $3.72 or $3.41.
3. John has 3 times as many marbles as Mark, so you can think of the whole set of marbles as 4 equal groups, with 3 of the groups in front of John and 1 group in front of Mark. If there are 32 marbles, each group contains 8 marbles. John has 24 marbles and Mark has 8 marbles.
4. If Mac does twice as much as his brother, he will do
images
of the lawn, while his brother does
images
. If it takes Mac 45 minutes to do
images
of the job, then it takes 15 minutes to do
images
and 30 minutes to do
images
. Meanwhile, during that 30 minutes, his little brother does the other
images
of the lawn.
5. The more people you have working, the faster the job will get done (assuming, of course, that the boys do not goof off on the job). If 6 boys were given 20 minutes to clean up, then 1 boy should be given 6 times as much time or 120 minutes. Then 9 would each require
images
of the time needed by 1 person:
images
minutes. Another way. If 6 boys can do the job in 20 minutes, then 3 would take 40 minutes. If there are 9 people working, then each set of 3 people does
images
of the job in 40 minutes, so the total time needed is
images
minutes.
6. No answer. Knowing the weight of one player is not helpful in determining the weight of 11 players. People's weights are not related to each other.
7. Every time they put away $7, Sandra pays $2 and her mom pays $5. To get $210, they will need to make their respective contributions 30 times. In all, Sandra will contribute $60 and her mom will contribute $150.
8. If you decrease the number of people doing a job, it will take longer to finish the job. If you have
images
the number of people working, they can get only
images
as much done in the 96 minutes. Each
images
of the job will take them 96 minutes, so they can do
images
of work in 192 minutes and
images
of the job (the whole job) in 288 minutes (4 hours and 48 minutes).
9. Reason down then reason up. The bike can run for 5 minutes on $0.65 worth of fuel, and for 1 minute on $0.13 worth of fuel. It can run for 6 minutes on $0.78 worth of fuel and for 7 minutes on $0.91 worth of fuel.
10. 15 to 1 = 150 to 10. Therefore, decreasing the number of faculty by 8 will give the required ratio.
11. Your shadow (8′) is 1.6 times as tall as you are (5′), so the shadow cast by the telephone pole must be 1.6 times as tall as the pole. If the shadow is 48′ and that is 1.6 times the real height of the telephone pole, the pole must be 30′ tall. Also, the telephone pole's shadow is 6 times as long as yours, so it must be 6 times as tall as you are.
12. In a square, two adjacent sides have the same length. That means that the ratio of the measure of one side to the measure of the other side would be 1. The rectangle that is most square is the one whose ratio of width to length is closest to 1. For the 35″ × 39″ rectangle, the ratio is
images
or about 0.90; for the 22″ × 25″ rectangle, the ratio is
images
or 0.88. This means that the 35″ × 39″ rectangle is most square.
13. Gear A has 1.5 times the number of teeth on gear B. So every time A turns once...

Indice dei contenuti