OQAM/FBMC for Future Wireless Communications
eBook - ePub

OQAM/FBMC for Future Wireless Communications

Principles, Technologies and Applications

Tao Jiang, Da Chen, Chunxing Ni, Daiming Qu

Condividi libro
  1. 268 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

OQAM/FBMC for Future Wireless Communications

Principles, Technologies and Applications

Tao Jiang, Da Chen, Chunxing Ni, Daiming Qu

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

OQAM/FBMC for Future Wireless Communications: Principles, Technologies and Applications introduces the concepts and key technologies of OQAM/FBMC, which has been regarded as the potential physical layer technique in future wireless communication systems. It comprises 10 chapters that provide an overview of wireless communications, introduce wireless channels, single carrier and multicarrier modulations, and three types of FBMC systems, also comparing OQAM/FBMC with OFDM. Other chapters introduce the OQAM/FBMC communication system model, the FFT implementation, CP insertion, PSD analysis, prototype filter optimization, joint PAPR reduction and sidelobe suppression, overhead reduction with virtual symbols, time and frequency domain channel estimations, block-wise SFBC for MIMO OQAM/FBMC, and much more.

  • Provides a comprehensive guide to most major OQAM/FBMC techniques
  • Includes a detailed comparison between OFDM and OQAM/FBMC
  • Provides readers with a complete introduction to OQAM/FBMC, from the transmitter to the receiver
  • Gives readers an up-to-date view of future mobile communications and how QAM/FBMC supports them

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
OQAM/FBMC for Future Wireless Communications è disponibile online in formato PDF/ePub?
Sì, puoi accedere a OQAM/FBMC for Future Wireless Communications di Tao Jiang, Da Chen, Chunxing Ni, Daiming Qu in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Electrical Engineering & Telecommunications. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Chapter 1

Introduction

Abstract

In this chapter, we introduce the background knowledge of wireless communications. Specifically, the overview of wireless communications, wireless channels, single-carrier, and multicarrier modulations are elaborated. As the most popular from of multicarrier modulations, orthogonal frequency division multiplexing (OFDM) is introduced in detail. We then present the filter bank multicarrier (FBMC) technique that has been considered as a potential alternative to OFDM. Moreover, we compare quadrature amplitude modulation-based FBMC (OQAM/FBMC) with OFDM in the aspects of orthogonal conditions, frequency spectrums, time-frequency synchronization, etc. Finally, we give the contents and organization of this book.

Keywords

Wireless communications; Wireless channels; Single-carrier; Multicarrier; Orthogonal frequency division multiplexing; Filter bank multicarrier; Quadrature amplitude modulation-based FBMC

1.1 An Overview of Wireless Communications

The development of wireless communication has gone through four generations. The first-generation (1G) wireless communication system is analog cellular wireless communication based on analog signal, which mainly provides voice services. It was the booming period for the development of 1G from the 1980s to 1990s. In 1978, Bell labs developed the advanced mobile phone service systems with the operation frequency 900 MHz. It was firstly put into commercial application in Chicago, Illinois, USA. After that, other industrialized countries developed their own cellular wireless communication systems such as total access communication system, Nordic Mobile Telephone and high capacity mobile telecommunication system, etc. The reason why the development of cellular wireless communication systems was so fast is due to: (1) multichannel sharing and frequency reuse technique; (2) complete system functions such as handover, wander, etc.; and (3) availability to civil telephone network. 1G employs the frequency division multiple access (FDMA) technique and voice signals are analogy modulated. Although they achieved great commercial success, some drawbacks that existed in these systems became more and more fatal as the number of users increased, such as low spectral efficiency, limited business lines, low rate data service, low security, high-cost equipment, etc.
To overcome the previous drawbacks of 1G, the second-generation (2G) wireless communication system was proposed and achieved fast development. Compared with 1G, 2G improves the spectral efficiency and supports several business lines (i.e., voices and low rate data services); hence it can be also called narrow-band digital wireless communication systems. Two typical cases, global system for mobile communication (GSM) and interim standard 95 (IS-95) were proposed by Europe and the United States from the middle 1980s, respectively. GSM originated from Europe and was designed for the global digital cellular communications. It employs time division multiple access (TDMA) and its data rate achieves 64 Kbps, working on 900 MHz. As the digital cellular standard of North America, IS-95 adopts code division multiple access (CDMA) technique, working on the frequency 900 or 1800 MHz.
Since 1990s, the number of Internet users has increased explosively with the rapid development of Internet. People wanted to access the Internet not only at home and the office, but also from moving locations. Thus, it was an urgent requirement to combine Internet and wireless communication technique. However, 1G and 2G cannot meet the requirement due to the low data rate. To settle the conflict between the huge wireless communication market and limited spectrum resources, the third-generation (3G) wireless communication system was developed. All over the world, three famous standards of 3G are wideband CDMA (WCDMA) in Europe, CDMA 2000 in the United States, and time-division synchronous CDMA (TD-SCDMA) in China. Compared with 1G and 2G, 3G systems employ more frequency bands up to more than 5 MHz and the data rates are 384 Kbps at least and 2 Mbps at most. 3G can transmit either voice or data. Thus, it can provide fast and convenient wireless application such as accessing to the Internet wirelessly. 3G can combine high-speed mobile access and Internet services and achieve the goals of global coverage and seamless connection among different wireless networks.
To meet the requirement of high data rate, the international telecommunications union specified a set of requirements for 4G standards in 2008, that is, the international mobile telecommunications advanced (IMT-Advanced), setting the peak speed to be 100 Mbps for high mobility communications such as in cars and trains. Orthogonal frequency division multiplexing (OFDM) and multi-input multi-output (MIMO) techniques constitute the basis of 4G standards. Compared with CDMA, OFDM has a stronger ability to fight against the frequency selective fading channel, especially...

Indice dei contenuti