Petroleum Engineer's Guide to Oil Field Chemicals and Fluids
eBook - ePub

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids

Johannes Fink

Condividi libro
  1. 808 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids

Johannes Fink

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Petroleum Engineer's Guide to Oil Field Chemicals and Fluids is a comprehensive manual that provides end users with information about oil field chemicals, such as drilling muds, corrosion and scale inhibitors, gelling agents and bacterial control. This book is an extension and update of Oil Field Chemicals published in 2003, and it presents a compilation of materials from literature and patents, arranged according to applications and the way a typical job is practiced. The text is composed of 23 chapters that cover oil field chemicals arranged according to their use. Each chapter follows a uniform template, starting with a brief overview of the chemical followed by reviews, monomers, polymerization, and fabrication. The different aspects of application, including safety and environmental impacts, for each chemical are also discussed throughout the chapters. The text also includes handy indices for trade names, acronyms and chemicals. Petroleum, production, drilling, completion, and operations engineers and managers will find this book invaluable for project management and production. Non-experts and students in petroleum engineering will also find this reference useful.

  • Chemicals are ordered by use including drilling muds, corrosion inhibitors, and bacteria control
  • Includes cutting edge chemicals and polymers such as water soluble polymers and viscosity control
  • Handy index of chemical substances as well as a general chemical index

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Petroleum Engineer's Guide to Oil Field Chemicals and Fluids è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Petroleum Engineer's Guide to Oil Field Chemicals and Fluids di Johannes Fink in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Chemical & Biochemical Engineering. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.
Chapter 1. Drilling Muds
According to the American Petroleum Institute (API), a drilling fluid is defined as a circulating fluid, used in rotary drilling to perform any or all of the various functions required in drilling operations.
Drilling fluids are mixtures of natural and synthetic chemical compounds used to cool and lubricate the drill bit, clean the hole bottom, carry cuttings to the surface, control formation pressures, and improve the function of the drill string and tools in the hole. They are divided into two general types: waterbased drilling muds (WBMs) and oil-based drilling muds (OBMs). The type of fluid base that is used depends on drilling and formation needs, as well as the requirements for disposing of the fluid after it is no longer needed. Drilling muds are a special class of drilling fluids used to drill most deep wells. The term mud is used because of the thick consistency of the formulation.
Drilling fluids serve several fundamental functions (Brazzel, 2009; Melbouci and Sau, 2008):
• Control of downhole formation pressures,
• Overcoming the fluid pressure of the formation,
• Avoiding damage to the producing formation,
• Removal of cuttings generated by the drill bit from the borehole, and
• Cooling and lubricating the drill bit.
In order to perform their fundamental functions, drilling fluids should possess several desirable characteristics, which greatly enhance the efficiency of the drilling operation.
These include desired rheological properties (plastic viscosity, yield value, low-end rheology, and gel strengths), fluid loss prevention, stability under various temperature and pressure operating conditions, stability against contaminating fluids, such as salt water, calcium sulfate, cement, and potassium contaminated fluids (Melbouci and Sau, 2008).
The drilling fluid should also have penetration enhancement characteristics that wet the drill string and keep the cutting surfaces of the drill bit clean (whether it is a roller cone or other configuration).
Wetting ability is at least in part a function of the surface tension of the fluid. The fluid should also have a high degree of lubricity and to minimize friction between the drill string and the wall of the borehole to minimize of differential sticking. In this situation, the hydrostatic pressure of the drilling fluid column must be sufficiently higher than the formation pressure so that the drill string is forced against the wall of the borehole and stuck.
It should also prevent the solids of the formation, primarily shales and clays, from swelling, so reducing the incidence of drill sticking, undergauge holes etc.

Classification of Muds

The classification of drilling muds is based on their fluid phase alkalinity, dispersion, and the type of chemicals used in their formulation. The classification according to (Lyons, 1996) is reproduced in Table 1.1.
Table 1.1 Classification of Drilling Muds
dDispersed systems
nNondispersed systems
ClassDescription
Fresh water mudsdpH from 7–9.5, include spud muds, bentonite-containing muds, phosphate-containing muds, organic thinned muds (red muds, lignite muds, lignosulfonate muds), organic colloid muds
Inhibited mudsdWater-based drilling muds that repress hydration of clays (lime muds, gypsum muds, sea water muds, saturated salt water muds)
Low-solids mudsnContain less than 3–6% of solids. Most contain an organic polymer
EmulsionsOil in water and water in oil (reversed phase, with more than 5% water)
OBMsContain less than 5% water; mixture of diesel fuel and asphalt
Drilling muds are usually classified as either WBMs or OBMs, depending upon the continuous phase of the mud. However, WBMs may contain oil and OBMs may contain water (Guichard et al., 2008).
OBMs generally use hydrocarbon oil as the main liquid component, with other materials such as clays or colloidal asphalts being added to provide the desired viscosity together with emulsifiers, polymers, and other additives including weighting agents. Water may also be present, but in an amount not usually greater than 50% by volume of the entire composition. If more than about 5% of water is present, the mud is often referred to as an invert emulsion, i.e., a water-in-oil emulsion.
WBMs conventionally contain viscosifiers, fluid loss control agents, weighting agents, lubricants, emulsifiers, corrosion inhibitors, salts, and pH control agents. Water makes up the continuous phase of the mud, and is usually present as at least 50 volume percent of the entire composition. Oil is also usually present in small amounts, but will typically not exceed the amount of the water, so that the mud will retain its character as a water-continuous-phase material.
Potassium muds are the most widely accepted water mud system for drilling water sensitive shales. K+ ions attach to clay surfaces and lend stability to the shale that is exposed to drilling fluids by the bit. The ions also help to hold the cuttings together, minimizing its dispersion into finer particles. Potassium chloride, KCl is the most widely used source of potassium, with others being potassium acetate, potassium carbonate, potassium lignite, potassium hydroxide, and potassium salt of partially hydrolyzed polyacrylamide (PHPA).
For rheological control, different types of polymers are used, such as xanthan gum and PHPA. For fluid loss control, mixtures of starch and polyanionic cellulose (PAC) are often used. Carboxymethyl starch, hydroxypropyl starch, carboxymethyl cellulose (CMC), and sodium polyacrylate are also ...

Indice dei contenuti