Gene Cloning and DNA Analysis
eBook - ePub

Gene Cloning and DNA Analysis

An Introduction

T. A. Brown

Condividi libro
  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

Gene Cloning and DNA Analysis

An Introduction

T. A. Brown

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Known worldwide as the standard introductory text to this important and exciting area of study, Gene Cloning and DNA Analysis: An Introduction, 8th Edition preserves the tradition of excellence created by previous editions. Comprehensive and authoritative, the book explores all of the topics crucial to an understanding of gene cloning in an approachable way. An easy-to-follow and user-friendly layout is presented in full-color throughout the volume, making it simple to absorb the clear and accessible material contained within.

Gene Cloning and DNA Analysis: An Introduction, 8th Edition contains updated and extended coverage of gene editing strategies like CRISPR/Cas, rewritten chapters on DNA sequencing and genome studies, as well as new material on real-time PCR and typing of human disease mutations. Over 250 full-color illustrations are included to bring to life the comprehensive content. The book also covers topics like:

  • The strategies used by researchers and industry practitioners to assemble genome sequences
  • Next generation sequencing methods and descriptions of their applications in studying genomes and transcriptomes
  • Includes the use and application of gene editing strategies
  • Interbreeding between Neanderthals and Homo Sapiens

Gene Cloning and DNA Analysis: An Introduction, 8th Edition is an invaluable introductory text for students in classes like genetics and genomics, molecular biology, biochemistry, immunology, and applied biology. It also belongs on the bookshelves of every professional who desires to improve their understanding of the basics of gene cloning or DNA analysis.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Gene Cloning and DNA Analysis è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Gene Cloning and DNA Analysis di T. A. Brown in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Biowissenschaften e Genetik & Genomik. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2020
ISBN
9781119640677
Edizione
8

PART I
The Basic Principles of Gene Cloning and DNA Analysis

  1. 1 Why Gene Cloning and DNA Analysis are Important
  2. 2 Vectors for Gene Cloning: Plasmids and Bacteriophages
  3. 3 Purification of DNA from Living Cells
  4. 4 Manipulation of Purified DNA
  5. 5 Introduction of DNA into Living Cells
  6. 6 Cloning Vectors for E. coli
  7. 7 Cloning Vectors for Eukaryotes
  8. 8 How to Obtain a Clone of a Specific Gene
  9. 9 The Polymerase Chain Reaction

Chapter 1
Why Gene Cloning and DNA Analysis are Important

CHAPTER CONTENTS

  1. 1.1 The early development of genetics
  2. 1.2 The advent of gene cloning and the polymerase chain reaction
  3. 1.3 What is gene cloning?
  4. 1.4 What is PCR?
  5. 1.5 Why gene cloning and PCR are so important
  6. 1.6 How to find your way through this book
In the middle of the 19th century, Gregor Mendel formulated a set of rules to explain the inheritance of biological characteristics. The basic assumption of these rules is that each heritable property of an organism is controlled by a factor, called a gene, that is a physical particle present somewhere in the cell. The rediscovery of Mendel’s laws in 1900 marks the birth of genetics, the science aimed at understanding what these genes are and exactly how they work.

1.1 The early development of genetics

For the first 30 years of its life, this new science grew at an astonishing rate. The idea that genes reside on chromosomes was proposed by W. Sutton in 1903, and received experimental backing from T.H. Morgan in 1910. Morgan and his colleagues then developed the techniques for gene mapping, and by 1922 had produced a comprehensive analysis of the relative positions of over 2000 genes on the four chromosomes of the fruit fly, Drosophila melanogaster.
Despite the brilliance of these classical genetic studies, there was no real understanding of the molecular nature of the gene until the 1940s. Indeed, it was not until the experiments of Avery, MacLeod, and McCarty in 1944, and of Hershey and Chase in 1952, that anyone believed that deoxyribonucleic acid (DNA) is the genetic material. Up until then it was widely thought that genes were made of protein. The discovery of the role of DNA was a tremendous stimulus to genetic research, and many famous biologists (Delbrück, Chargaff, Crick, and Monod were among the most influential) contributed to the second great age of genetics. In the 14 years between 1952 and 1966, the structure of DNA was elucidated, the genetic code cracked, and the processes of transcription and translation described.

1.2 The advent of gene cloning and the polymerase chain reaction

These years of activity and discovery were followed by a lull, a period of anticlimax, when it seemed to some molecular biologists (as the new generation of geneticists styled themselves) that there was little of fundamental importance that was not understood. In truth there was a frustration that the experimental techniques of the late 1960s were not sophisticated enough to allow genes to be studied in any greater detail.
Then, in the years 1971–1973 genetic research was thrown back into gear by what at the time was described as a revolution in experimental biology. A whole new methodology was developed, enabling previously impossible experiments to be planned and carried out, if not with ease, then at least with success. These methods, referred to as recombinant DNA technology or genetic engineering, and having at their core the process of gene cloning, sparked another great age of genetics. They led to rapid and efficient DNA sequencing techniques that enabled the structures of individual genes to be determined, reaching a culmination at the turn of the century with the massive genome sequencing projects, including the human project which was completed in 2000. They led to procedures for studying the regulation of individual genes, which have allowed molecular biologists to understand how aberrations in gene activity can result in human diseases such as cancer. The techniques spawned modern biotechnology, which puts genes to work in production of proteins and other compounds needed in medicine and industrial processes.
During the 1980s, when the excitement engendered by the gene cloning revolution was at its height, it hardly seemed possible that another, equally novel and equally revolutionary process was just around the corner. According to DNA folklore, Kary Mullis invented the polymerase chain reaction (PCR) during a drive along California State Route 128 from Berkeley to Mendocino one Friday evening in 1983. His brainwa...

Indice dei contenuti