Ion Mobility-Mass Spectrometry
eBook - ePub

Ion Mobility-Mass Spectrometry

Fundamentals and Applications

Alison E Ashcroft, Frank Sobott, Alison E Ashcroft, Frank Sobott

Condividi libro
  1. 476 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Ion Mobility-Mass Spectrometry

Fundamentals and Applications

Alison E Ashcroft, Frank Sobott, Alison E Ashcroft, Frank Sobott

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Over the last decade, the use of ion mobility separation in combination with mass spectrometry analysis has developed significantly. This technique adds a unique extra dimension enabling the in-depth analysis of a wide range of complex samples in the areas of the chemical and biological sciences. Providing a comprehensive guide to the technique, each chapter is written by an internationally recognised expert and with numerous different commercial platforms to choose from, this book will help the end users understand the practicalities of using different instruments for different ion mobility purposes.

The first section provides a detailed account of the fundamentals behind the technique and the current range of available instrumentation. The second section focusses on the wide range of applications that have benefitted from ion mobility – mass spectrometry and includes topics taken from current research in the pharmaceutical, metabolomics, glycomics, and structural molecular biology fields. The book is primarily aimed at researchers, appealing to practising chemists and biochemists, as well as those in the pharmaceutical and medical fields.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Ion Mobility-Mass Spectrometry è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Ion Mobility-Mass Spectrometry di Alison E Ashcroft, Frank Sobott, Alison E Ashcroft, Frank Sobott in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Physical Sciences e Analytic Chemistry. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2021
ISBN
9781839162893
Edizione
1
CHAPTER 1
Ion Mobility–Mass Spectrometry: an Overview
Valérie Gabelica*a
a Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France,
*E-mail: [email protected]

Ion mobility spectrometry is increasingly often coupled to mass spectrometry measurements, either for separation purposes or to assist compound identification. This chapter introduces basic definitions and concepts underlying ion mobility spectrometry. The definition of “collision cross-sections” as used in ion mobility spectrometry is also discussed, with a cautious note that the IUPAC definition is not entirely suited to describe the physical quantity on which ion mobility depends. Finally, the types of ion mobility analyzers most commonly encountered in contemporary commercial ion mobility-mass spectrometers are introduced and compared.

1.1 What is Ion Mobility Spectrometry?

1.1.1 Spectrometry

A spectrometric technique physically separates compounds in a so-called spectrometer. A spectroscopic technique, in contrast, analyses the interaction between matter and electromagnetic radiation (UV, visible, infrared light, etc.).
The most widespread spectrometric technique is mass spectrometry, which physically separates compounds according to their mass-to-charge ratio. In practice, mass spectrometry separates ions, not neutral compounds, because the separation is achieved by the movement of ions in an electric or magnetic field. To ensure that the ion movement is defined only by the electric or magnetic field, as desired in most mass analysis approaches, mass spectrometers operate at low pressure so that collisions do not interfere with the movement of the ions during mass analysis.

1.1.2 Ion Mobility

Imagine you want to move ions using an electric field (E⃑). The electric force applied to the ions is F⃑ = qE⃑. The higher the charge q, the higher the force F⃑. Because of the electric field, the ions will accelerate, according to the law F⃑ = ma⃑, where a⃑ is the acceleration.
Now let us imagine that the ions are accelerated in a medium filled with gas, at a high enough gas pressure that there are many collisions to compensate for the acceleration. Because of the collisions, the ions will slow down. The collisions are responsible for a friction force, acting in the opposite direction to the applied electric force. So, when ions are subjected to an electric field in a region of relatively high pressure, they will constantly be accelerated, decelerated, accelerated, decelerated, and so on (Figure 1.1).
image
Figure 1.1The instant velocity of an ion is constantly changing, and the average drift velocity
depends on the balance between accelerations by the electric field E⃑ and decelerations by collisions.
If the collisions are frequent and numerous enough, the electric force and friction force balance each other and a stationary state is reached. As the two forces cancel each other out, there is no net acceleration, and the average speed will appear constant. This is called the drift velocity (
).
The ion’s mobility (K) is the proportionality constant between the drift velocity and the electric field:
(1.1)
In summary, ion mobility spectrometry consists of separating ions in an electric field in the presence of a collision gas. The separation will be based on the value of K, the ion’s mobility. This chapter will cover the very basics of ion mobility spectrometry. For a thorough coverage of ion mobility theory, the reader can refer to a recent book by Larry A. Viehland.1

1.2 What is Ion Mobility Spectrometry Used For?

The mobility, K, of an ion depends on its charge (q = ze, where z is the net charge and e the charge of an electron), and its friction in the gas. We are interested in measuring this friction. Indeed, even if friction is partly related to mass (ions of higher mass are usually larger as well), other parameters come into play, for example the arrangement of atoms in space (the three-dimensional structure) of the ion. At equal mass and charge, if an ion has a more expanded structure, the friction will be greater, thus the mobility will be smaller, and the drift velocity will be lower. If the ion has a more compact structure, its mobility will be larger, resulting in a higher drift velocity.
This is the “parachute” effect. If you jump out of an airplane, you are subjected to the force of gravity. But you can slow down your fall by deploying your parachute. Your mass does not change, the force of gravity does not change, but your “conformation” changes and slows you down. The larger your parachute, the slower your fall (Figure 1.2).
image
Figure 1.2An ion mobility analogy: the larger your parachute, the slower your fall.
Ion mobility spectrometry separates ions according to their three-dimensional structure (shape, i.e. nuclei positions but also, as we will see below, electronic structure), and thus provides complementary information to mass spectrometry. Ion mobility spectrometry is particularly useful for separating isomeric compounds (which have the same atoms but different three-dimensional arrangements), or isobaric compounds (which incidentally have the same mass). Since both spectrometries are performed on ions in the gas phase, they are frequently coupled into a single instrument: an ion mobility–mass spectrometer (IM-MS). Consequently, ion mobility spectrometry can be used for many different applications, as detailed below.

1.2.1 An Additional Method of Separation Coupled to Mass Spectrometry

The ion mobility separation typically takes place on the millisecond time scale, i.e. orders of magnitude faster than chromatography, and thus the methods can be used orthogonally. The IM-MS combination is particularly useful:
  • To resolve conformational isomers. Figure 1.3 shows an example with the separation of two conformations for the dinucleotide dCG (deoxycytosine–deoxyguanine).2 Here the mobility separation was carried out in a temperature-controlled drift tube. Folded conformations travel faster (arrive earlier) than open conformations, but it is interesting to note that the two peaks are separated only at low drift tube temperature. This illustrates that one condition for separating conformers by ion mobility spec...

Indice dei contenuti