L'enigma di Fermat
eBook - ePub

L'enigma di Fermat

  1. Italian
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

L'enigma di Fermat

Informazioni su questo libro

Nel 1637 il matematico francese Pierre de Fermat scrisse in una breve nota di aver dimostrato che, mentre il quadrato di un numero intero può essere scomposto nella somma dei quadrati di altri due numeri, come si evince dal teorema di Pitagora, ciò non è possibile per il cubo e per tutte le potenze superiori a due. La prova di questa affermazione non venne mai trovata tra le sue carte, e quello che venne definito "l'ultimo teorema di Fermat" rimase privo di dimostrazioni per secoli. Nel 1993 il professor Andrew Willes dell'università di Princeton, annunciò di aver risolto l'enigma dopo sette anni di lavoro. Il libro di Aczel è la ricostruzione di questa straordinaria ricerca scientifica, fatta di grandi sodalizi, intrighi e tradimenti.

Domande frequenti

Sì, puoi annullare l'abbonamento in qualsiasi momento dalla sezione Abbonamento nelle impostazioni del tuo account sul sito web di Perlego. L'abbonamento rimarrà attivo fino alla fine del periodo di fatturazione in corso. Scopri come annullare l'abbonamento.
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui.
Perlego offre due piani: Base e Completo
  • Base è ideale per studenti e professionisti che amano esplorare un’ampia varietà di argomenti. Accedi alla Biblioteca Base con oltre 800.000 titoli affidabili e best-seller in business, crescita personale e discipline umanistiche. Include tempo di lettura illimitato e voce Read Aloud standard.
  • Completo: Perfetto per studenti avanzati e ricercatori che necessitano di accesso completo e senza restrizioni. Sblocca oltre 1,4 milioni di libri in centinaia di argomenti, inclusi titoli accademici e specializzati. Il piano Completo include anche funzionalità avanzate come Premium Read Aloud e Research Assistant.
Entrambi i piani sono disponibili con cicli di fatturazione mensili, ogni 4 mesi o annuali.
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Sì! Puoi usare l’app Perlego sia su dispositivi iOS che Android per leggere in qualsiasi momento, in qualsiasi luogo — anche offline. Perfetta per i tragitti o quando sei in movimento.
Nota che non possiamo supportare dispositivi con iOS 13 o Android 7 o versioni precedenti. Scopri di più sull’utilizzo dell’app.
Sì, puoi accedere a L'enigma di Fermat di Amir D. Aczel in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Scienze biologiche e Scienza generale. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Il 23 giugno 1993, poco prima dell’alba, il professor John Conway raggiunse l’istituto di matematica, completamente buio, nel campus dell’università di Princeton; aprì il portone e salì subito nel suo ufficio. Per settimane, prima che il suo collega Andrew Wiles partisse per l’Inghilterra, voci insistenti ma imprecise erano circolate nella comunità mondiale dei matematici; Conway si aspettava che accadesse qualcosa di importante, ma che cosa esattamente? Non ne aveva idea. Accese il computer e sedette, osservando lo schermo. Alle cinque e cinquantatré giunse dall’altra sponda dell’Atlantico una concisa e-mail: «Wiles dimostra U.T.F.».

Cambridge, Inghilterra, giugno 1993

Nella seconda metà del giugno 1993 il professor Andrew Wiles prese l’aereo per l’Inghilterra. Tornava alla Cambridge University, dove vent’anni prima aveva conseguito il dottorato di ricerca; il professor John Coates, relatore della sua tesi a Cambridge, stava organizzando un convegno sulla Teoria di Iwasawa, il settore della teoria dei numeri su cui Andrew Wiles aveva scritto la sua tesi e di cui era un esperto. Coates aveva chiesto al suo ex allievo se era disposto a fare un intervento di un’ora al convegno, su un argomento di sua scelta, e il timidissimo Wiles, da sempre riluttante a parlare in pubblico, aveva risposto, con grande sorpresa di Coates e degli altri organizzatori, chiedendo se poteva averne a disposizione tre.
All’arrivo a Cambridge Wiles, allora quarantenne, aveva l’aspetto del matematico tipico: camicia bianca con le maniche arrotolate, occhiali spessi con montatura di corno, capigliatura bionda e rada, dai ciuffi ribelli. Era nato a Cambridge e il suo ritorno era un modo speciale di farsi rivedere a casa: la realizzazione di un sogno d’infanzia. Andrew Wiles aveva trascorso gli ultimi sette anni come un vero recluso nel suo attico, ma sperava che quel periodo di sacrifici, di lotta, di lunghe ore di solitudine volgesse ormai al termine. Fra poco, forse, avrebbe potuto passare più tempo con la moglie e le figlie, che da sette anni vedeva così di rado. Aveva saltato molti pranzi e tè in famiglia, facendosi vedere solo per cena; ma ora gli elogi sarebbero stati tutti per lui.
Il Sir Isaac Newton Institute for Mathematical Sciences di Cambridge era stato inaugurato da poco quando il professor Wiles vi giunse per tenere le sue tre ore di lezione. È un vasto edificio, situato in un paesaggio suggestivo a una certa distanza dall’università; oltre alle aule comprende ampi locali arredati con sedie comode ed eleganti, e spazi concepiti per facilitare gli scambi informali di idee fra studiosi e scienziati e quindi promuovere lo studio e il sapere.
Pur conoscendo la maggioranza degli altri matematici, venuti da tutto il mondo a quel convegno specialistico, Wiles rimaneva in disparte; quando i colleghi si mostravano incuriositi per la lunghezza del suo intervento, lui rispondeva loro di venire a sentire, per rendersi conto di persona. Modi tanto misteriosi erano insoliti, anche per un matematico. Spesso i matematici, quando cercano di dimostrare un teorema, lavorano da soli, e generalmente non godono la reputazione d’essere gli individui più socievoli del mondo; ma di solito si comunicano le loro scoperte. I risultati matematici circolano liberamente; gli autori li fanno girare sotto forma di preprint, vale a dire di stesura provvisoria, e queste stesure provvisorie assicurano loro i consigli di altri studiosi, che li aiutano a migliorare il lavoro prima di pubblicarlo. Ma Wiles non aveva distribuito preprints, né aveva parlato del suo lavoro. Dal titolo annunciato, Forme modulari, curve ellittiche e rappresentazioni di Galois, non si riusciva a capire dove sarebbe andato a parare, e nemmeno gli esperti del settore riuscivano a indovinare nulla. Con il passare del tempo, alcune voci si facevano più insistenti.
Il primo giorno Wiles premiò la ventina di specialisti che erano venuti a sentirlo con un risultato matematico sostanzioso e sorprendente: e c’erano altre due lezioni in programma. Che cosa bolliva in pentola? Ormai appariva chiaro a tutti che le sue lezioni costituivano l’evento da non perdere, e la tensione aumentava man mano che i matematici, in fervida attesa, accorrevano numerosi.
Il secondo giorno Wiles cominciò a procedere più spedito. Aveva portato con sé oltre duecento pagine di formule e deduzioni, di idee originali che avevano la forma di nuovi teoremi, con lunghe dimostrazioni astratte. Ora l’aula era affollata e ognuno ascoltava con attenzione. Dove voleva andare a parare? Non lo faceva capire. Continuava a scrivere alla lavagna, tranquillo, e non appena ebbe terminato si volatilizzò.
L’ultima lezione ebbe luogo il giorno seguente, mercoledì 23 giugno 1993. Per entrare nell’aula, Wiles dovette farsi strada a spintoni. La gente si assiepava anche all’esterno, bloccando l’ingresso, e il locale era affollatissimo. Molti avevano con sé una macchina fotografica. Man mano che Wiles scriveva, di nuovo, formule e teoremi che sembravano senza fine, la tensione aumentava. In seguito il professor Ken Ribet della University of California di Berkeley mi disse: «Quel crescendo poteva avere solo un finale, c’era una sola possibile conclusione dell’esposizione di Wiles». Wiles stava scrivendo le ultime righe della dimostrazione di un’ipotesi matematica enigmatica e complicata, la Congettura di Shimura-Taniyama; poi, improvvisamente, aggiunse un’ultima riga, rienunciando un’equazione vecchia di secoli che, come Ribet aveva dimostrato sette anni prima, seguiva da quella congettura. «Così questo dimostra l’Ultimo Teorema di Fermat» aggiunse sbrigativamente; «penso che mi fermerò qui.»
Nell’aula ci fu un istante di silenzio allibito, poi il pubblico esplose in un’ovazione spontanea. I flash lampeggiarono, tutti si alzarono per congratularsi con un Wiles raggiante. Nel giro di pochi minuti i messaggi elettronici e i fax inondarono il mondo. A quanto sembrava, il più celebre problema matematico di tutti i tempi era stato risolto.
«La cosa più inattesa fu il diluvio della stampa mondiale il giorno successivo» ricorda il professor John Coates, che aveva organizzato il convegno senza aspettarsi minimamente che diventasse la rampa di lancio di uno dei massimi trionfi della matematica. I titoli dei giornali di tutto il mondo salutavano questo successo imprevisto. La prima pagina del New York Times del 24 giugno 1993 annunciava: «Finalmente un grido, “Eureka!”, risolve un antico mistero matematico». In un lungo articolo, il Washington Post chiamava Wiles «l’uccisore del drago matematico», e un po’ qua un po’ là fiorivano gli aneddoti sulla persona che, a quanto sembrava, aveva risolto il problema più ostinato di tutta la matematica: un enigma che da più di tre secoli e mezzo sfidava ogni soluzione. Il tranquillo e riservatissimo Andrew Wiles finì da un giorno all’altro sulla bocca di tutti.

Pierre de Fermat

Pierre de Fermat, francese, vissuto nel Seicento, era un magistrato che coltivava l’hobby della matematica. Ma sebbene fosse appunto un dilettante, dato che la sua professione era quella del giudice, egli fu, come scrisse lo storico della matematica E.T. Bell, attivo nei primi anni del Novecento, il «principe dei dilettanti». Secondo Bell, Fermat aveva ottenuto risultati più importanti di quelli della maggior parte dei matematici «professionisti» dell’epoca e anzi era stato l’autore più prolifico del Seicento, un secolo che aveva visto all’opera alcuni dei massimi cervelli matematici di tutti i tempi.1
Una delle conquiste più stupefacenti di Fermat fu l’elaborazione delle idee fondamentali del calcolo infinitesimale, tredici anni prima che Isaac Newton nascesse. La tradizione più diffusa attribuisce congiuntamente a Newton e al suo coetaneo Gottfried Wilhelm von Leibniz il merito di aver concepito quella teoria matematica che tratta di moto, accelerazione, forze, orbite e altri concetti matematici applicati alle trasformazioni continue, vale a dire quello che oggi chiamiamo calcolo infinitesimale.
Fermat era affascinato dall’opera degli antichi matematici greci, ed è possibile che siano stati proprio due di questi, Archimede ed Eudosso, vissuti rispettivamente nel III e IV secolo a.C, a ispirarlo nell’elaborazione del calcolo infinitesimale. Studiava le opere degli antichi, che ai suoi tempi circolavano in traduzioni latine, in ogni momento libero; aveva un lavoro a tempo pieno (era un magistrato importante), ma la sua passione era cercare di generalizzare le conquiste degli antichi e trovare sempre nuove bellezze nelle loro scoperte, sepolte a lungo nell’oblio. «Ho trovato un gran numero di teoremi straordinariamente belli» disse una volta; e questi teoremi li annotava ai margini delle traduzioni di opere antiche che possedeva.
Fermat era figlio di un mercante di pellami, Dominique Fermat, secondo console della città di Beaumont-de-Lomagne, e di Claire de Long, proveniente da una famiglia di magistrati dell’ordine giudiziario. Era nato nell’agosto del 1601 (fu battezzato il 20 di quel mese a Beaumont-de-Lomagne) e i suoi genitori lo avviarono agli studi per diventare magistrato. Studiò a Tolosa, dove divenne Commissario alle Richieste all’età di trent’anni; nello stesso anno (1631) sposò Louise de Long, una cugina della madre. Pierre e Louise ebbero cinque figli: tre maschi e due femmine; uno dei maschi, Clément Samuel, divenne l’esecutore testamentario scientifico del padre e pubblicò postume le sue opere. L’edizione delle opere di Fermat che ci è pervenuta è appunto quella pubblicata dal figlio, ed è grazie a essa che noi conosciamo il celebre Ultimo Teorema. Clément Samuel de Fermat infatti si era reso conto dell’importanza di quel teorema annotato a margine, e l’aveva aggiunto all’edizione dell’opera di Diofanto da lui ripubblicata.
immagine
L’edizione dell’Arithmetica di Diofanto pubblicata dal figlio di Fermat, Samuel. La copia originale con l’annotazione autografa di Fermat non è mai stata ritrovata.
In genere si parla della vita di Fermat come di un’esistenza tranquilla, stabile e priva di eventi esteriori. Svolgeva il suo lavoro onestamente e con dignità, e nel 1648 fu promosso a una funzione importante, consigliere del re al Parlamento provinciale di Tolosa; conservò questa posizione fino alla morte, nel 1665. Considerato il suo intenso lavoro per la corona, cui consacrò una vita di servizio devoto, abile e coscienzioso, molti storici non riescono a spiegarsi come riuscisse a trovare il tempo e l’energia mentale per elaborare una matematica di prim’ordine, scrivendone per giunta libri e libri. Uno studioso francese ha avanzato l’ipotesi che l’incarico ufficiale di Fermat fosse, di fatto, vantaggioso per i suoi studi matematici, dato che i magistrati dei parlements, che erano anche le supreme corti di giustizia francesi, dovevano, almeno in teoria, ridurre al minimo le loro relazioni non professionali, onde evitare le tentazioni dei donativi e di altre forme di corruzione; e poiché Fermat aveva sicuramente bisogno di distrarsi, dato che il suo lavoro era molto impegnativo e lo obbligava a limitare la vita di società, la matematica doveva offrirgli quel diversivo di cui aveva tanto bisogno. D’altronde le idee di base del calcolo infinitesimale non furono affatto la sua unica conquista; Fermat ci ha lasciato anche la teoria dei numeri, una disciplina in cui il concetto di numero primo ha una straordinaria importanza.

I numeri primi

I numeri 1, 2 e 3 sono primi. Il numero 4 non è primo perché è il prodotto di 2 per 2 (2 × 2 = 4). Il numero 5 è primo. Il numero 6 non è primo perché è, come 4, il prodotto di due numeri (2 × 3 = 6). 7 è primo, 8 non lo è (2 × 2 × 2 = 8), 9 nemmeno (3 × 3 = 9) e 10 neppure (2 × 5 = 10). Ma 11 è di nuovo primo perché non esistono interi (a parte 1 e lo stesso 11) che moltiplicati fra di loro diano 11. E possiamo continuare allo stesso modo: 12 non è primo, 13 lo è, 14, 15 e 16 non lo sono, 17 lo è, e così via. In questa serie non è riconoscibile alcuna struttura del tipo «un numero ogni quattro è primo», e neppure una più complicata. Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. I numeri primi sono gli elementi essenziali della teoria dei numeri, e il fatto che non abbiano una struttura facilmente riconoscibile rende priva di unità questa teoria e isola i suoi problemi rispetto a tutti gli altri, rendendoli difficili da risolvere e privi di chiare implicazioni per ambiti diversi della matematica. Come dice Barry Mazur, «La teoria dei numer...

Indice dei contenuti

  1. Copertina
  2. Prefazione
  3. L’enigma di Fermat
  4. Note al testo
  5. Nota dell'autore