L'enigma dei numeri primi
eBook - ePub

L'enigma dei numeri primi

L'ipotesi di Riemann, il più grande mistero della matematica

  1. 386 pagine
  2. Italian
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

L'enigma dei numeri primi

L'ipotesi di Riemann, il più grande mistero della matematica

Informazioni su questo libro

L'affascinante racconto del più profondo mistero della matematica. Nel 1866, in fuga dall'esercito prussiano, lo studioso tedesco Bernhard Riemann dovette abbandonare per sempre tutti gli appunti dei suoi studi. Quelle carte nascondevano forse la soluzione a un enigma millenario: il segreto dei numeri primi, atomi della matematica tanto imprevedibili quanto fondamentali. Tra aneddoti e colpi di scena, Du Sautoy ricostruisce per noi una delle più ardite sfide del pensiero, quella per arrivare a comprendere la distribuzione dei numeri primi, presentando i principali quesiti risolti e irrisolti di una realtà ancora sfuggente e spiegandone l'importanza nei più diversi campi: dalla fisica quantistica alla sicurezza delle nostre carte di credito. E, contemporaneamente, ci narra le vicende dei grandi matematici che in ogni tempo si sono spinti in questo territorio misterioso: da Euclide, il primo a dimostrare l'esistenza di infiniti numeri primi, fino a Riemann e ai suoi odierni continuatori. Il risultato è un libro indimenticabile, capace di guidarci – con ironia e semplicità – fino ai fondamenti della scienza.

Domande frequenti

Sì, puoi annullare l'abbonamento in qualsiasi momento dalla sezione Abbonamento nelle impostazioni del tuo account sul sito web di Perlego. L'abbonamento rimarrà attivo fino alla fine del periodo di fatturazione in corso. Scopri come annullare l'abbonamento.
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui.
Perlego offre due piani: Base e Completo
  • Base è ideale per studenti e professionisti che amano esplorare un’ampia varietà di argomenti. Accedi alla Biblioteca Base con oltre 800.000 titoli affidabili e best-seller in business, crescita personale e discipline umanistiche. Include tempo di lettura illimitato e voce Read Aloud standard.
  • Completo: Perfetto per studenti avanzati e ricercatori che necessitano di accesso completo e senza restrizioni. Sblocca oltre 1,4 milioni di libri in centinaia di argomenti, inclusi titoli accademici e specializzati. Il piano Completo include anche funzionalità avanzate come Premium Read Aloud e Research Assistant.
Entrambi i piani sono disponibili con cicli di fatturazione mensili, ogni 4 mesi o annuali.
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Sì! Puoi usare l’app Perlego sia su dispositivi iOS che Android per leggere in qualsiasi momento, in qualsiasi luogo — anche offline. Perfetta per i tragitti o quando sei in movimento.
Nota che non possiamo supportare dispositivi con iOS 13 o Android 7 o versioni precedenti. Scopri di più sull’utilizzo dell’app.
Sì, puoi accedere a L'enigma dei numeri primi di Marcus Du Sautoy in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Scienze biologiche e Algebra. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
BUR
Anno
2011
Print ISBN
9788817050227
eBook ISBN
9788858620779
Categoria
Algebra
L'enigma dei numeri primi
In memoria di
Yonathan du Sautoy
21 Ottobre 2000
1
Chi vuol essere milionario?
«Sappiamo di che sequenza di numeri si tratta? D’accordo, vediamo, possiamo arrivarci con la nostra testa... cinquantanove, sessantuno, sessantasette... settantuno... Non sono tutti numeri primi?» Un brusio di eccitazione si diffuse per la sala di controllo. Il volto di Ellie rivelò per un istante il fremito di un’emozione intensa, che fu però rapidamente sostituito da un’espressione sobria, da un timore di lasciarsi sopraffare, da un’inquietudine di apparire sciocca, non scientifica.
Carl Sagan, Contact
Una mattina calda e umida dell’agosto 1900, David Hilbert dell’università di Gottinga prese la parola al Congresso internazionale dei matematici in una gremita sala per le conferenze della Sorbona, a Parigi. Hilbert, che già allora era riconosciuto come uno dei più grandi matematici dell’epoca, aveva preparato un discorso ardito. Si proponeva di parlare non di ciò che era già stato dimostrato ma di ciò che era ancora ignoto. Questo andava contro tutte le regole, e quando Hilbert cominciò a esporre la propria visione del futuro della matematica il pubblico percepì il nervosismo nella sua voce. «Chi di noi non sarebbe felice di sollevare il velo dietro al quale si cela il futuro; di gettare uno sguardo ai progressi venturi della nostra scienza e ai segreti del suo sviluppo nel corso dei prossimi secoli?» Per annunciare il nuovo secolo, Hilbert proponeva come sfida ai suoi ascoltatori un elenco di ventitré problemi che secondo lui avrebbero dovuto tracciare la rotta per gli esploratori matematici del XX secolo.
I decenni che seguirono videro le risposte a molti di quei problemi, e coloro che ne scoprirono le soluzioni formano un illustre gruppo di matematici noto con il nome di «The Honours Class». Il gruppo comprende personaggi del calibro di Kurt Gödel e di Henri Poincaré, insieme a molti altri pionieri le cui idee hanno mutato radicalmente il paesaggio della matematica. Ma c’era un problema, l’ottavo nell’elenco di Hilbert, che sembrava destinato a sopravvivere al secolo senza che si trovasse un campione in grado di sconfiggerlo: l’ipotesi di Riemann.
Di tutte le sfide che Hilbert aveva approntato, l’ottava occupava un posto speciale nel suo cuore. Esiste un mito germanico su Federico Barbarossa, un imperatore molto amato dai tedeschi. Dopo la sua morte, avvenuta durante la Terza Crociata, si diffuse la leggenda che in realtà Federico fosse ancora vivo, e che giacesse addormentato in una caverna nel monte Kyffhäuser. Si sarebbe risvegliato solo quando la Germania avesse avuto bisogno di lui. Si dice che qualcuno chiese a Hilbert: «Se lei, come il Barbarossa, dovesse rinascere fra cinquecento anni, quale sarebbe la prima cosa che farebbe?». «Domanderei se qualcuno ha dimostrato l’ipotesi di Riemann» fu la sua risposta.
Mentre il XX secolo stava per chiudersi, la maggior parte dei matematici si era rassegnata al fatto che fra tutti i problemi proposti da Hilbert quella gemma preziosa non solo aveva grandi probabilità di sopravvivere al secolo, ma forse non sarebbe stata ancora risolta quando Hilbert si fosse risvegliato dal suo sonno di cinquecento anni. Con quel suo rivoluzionario discorso carico di un senso di mistero, egli aveva provocato sconcerto al primo Congresso internazionale del XX secolo. Tuttavia, per quei matematici che avevano in programma di partecipare all’ultimo Congresso del secolo c’era in serbo una sorpresa.
Il 7 aprile 1997 una notizia eccezionale balenò sugli schermi dei computer dell’intera comunità matematica mondiale. Sul sito web del Congresso internazionale che si sarebbe tenuto l’anno seguente a Berlino comparve l’annuncio che la conquista del Santo Graal della matematica era stata finalmente rivendicata. Qualcuno aveva dimostrato l’ipotesi di Riemann. Quella notizia era destinata ad avere effetti profondi. L’ipotesi di Riemann è un problema centrale per l’intera matematica. Mentre leggevano la loro posta elettronica, i matematici fremevano d’eccitazione alla prospettiva di comprendere uno dei più grandi misteri della matematica.
L’annuncio giungeva in una lettera del professor Enrico Bombieri. Non si sarebbe potuta chiedere una fonte migliore, più stimata. Bombieri è uno dei custodi dell’ipotesi di Riemann e risiede al prestigioso Institute for Advanced Study di Princeton, che già ospitò Einstein e Gödel. Parla in modo molto pacato, ma i matematici ascoltano con attenzione tutto quello che ha da dire.
Bombieri è cresciuto in Italia, dove i vigneti della sua ricca famiglia gli hanno fatto acquisire un gusto per le cose belle della vita. I colleghi lo chiamano con affetto «l’aristocratico della matematica». Da giovane la sua eleganza raffinata attraeva sempre l’attenzione ai convegni europei, dove spesso arrivava alla guida di costose automobili sportive. Lui, d’altra parte, era ben felice di alimentare le voci secondo cui una volta si era classificato sesto a una ventiquattrore automobilistica in Italia. Col tempo i suoi successi nel circuito matematico furono più tangibili e negli anni Settanta gli valsero un invito a recarsi a Princeton, dove è rimasto. Ha sostituito l’entusiasmo per le corse con una passione per la pittura, soprattutto per i ritratti.
Ma è l’arte creativa della matematica, e in particolare la sfida posta dall’ipotesi di Riemann, a procurare a Bombieri l’eccitazione più grande. L’ipotesi di Riemann lo aveva ossessionato fin dalla precoce età di quindici anni, quando ne aveva letto per la prima volta. Le proprietà dei numeri non smettevano di affascinarlo mentre sfogliava i libri di matematica che suo padre, un economista, aveva raccolto nella sua vasta biblioteca. Scoprì che l’ipotesi di Riemann era considerata il problema più profondo e fondamentale della teoria dei numeri. E la sua passione per quel problema crebbe ancor di più quando suo padre si offrì di compragli una Ferrari se l’avesse risolto, un tentativo disperato di fargli smettere di guidare la sua Ferrari.
Stando all’e-mail di Bombieri, qualcuno l’aveva battuto sul tempo, facendogli perdere il premio. «Ci sono sviluppi fantastici alla conferenza che Alain Connes ha tenuto all’Institute for Advanced Study mercoledì scorso» esordiva Bombieri. Molti anni prima, la notizia che Connes aveva rivolto la propria attenzione all’ipotesi di Riemann, con l’intento di provare a sbrogliarla, aveva infiammato il mondo matematico. Connes è uno dei rivoluzionari della disciplina, un mite Robespierre della matematica rispetto al Luigi XVI incarnato da Bombieri. È un personaggio dotato di un carisma straordinario, il cui stile focoso lo pone ben lontano dall’immagine tradizionale del matematico serioso e impacciato. Ha la passione di un fanatico profondamente convinto della propria visione del mondo, e chi assiste alle sue lezioni ne rimane ipnotizzato. Per i suoi seguaci è quasi una figura di culto. Sarebbero felici di unirsi a lui sulle barricate della matematica per difendere il loro eroe da ogni controffensiva lanciata dalle posizioni di trinceramento dell’ancien régime.
musica1
Alain Connes, professore dell’Institut des Hautes Études
Scientifiques e del Collège de France.
La sede di lavoro di Connes è la risposta francese all’Institute di Princeton: l’Institut des Hautes Études Scientifiques di Parigi. Da quando vi arrivò, nel 1979, Connes ha creato un linguaggio completamente nuovo per la comprensione della geometria. L’idea di portare questa disciplina agli estremi dell’astrazione non lo spaventa. Persino fra le file dei matematici, che in genere hanno familiarità con l’approccio fortemente concettuale della loro disciplina nei confronti della realtà, la maggioranza ha esitato di fronte alla rivoluzione astratta proposta da Connes. Eppure, come egli ha dimostrato a coloro che dubitano della necessità di una teoria tanto asciutta, il suo nuovo linguaggio geometrico custodisce molti indizi utili a comprendere il mondo reale della fisica quantistica. Se poi questo instilla il terrore nel cuore delle masse matematiche, pazienza.
L’audace convinzione di Connes secondo cui la sua nuova geometria non solo avrebbe potuto togliere il velo al mondo della fisica quantistica ma anche spiegare l’ipotesi di Riemann – il più grande mistero relativo ai numeri – fu accolta con sorpresa e persino con turbamento. Il fatto che egli osasse avventurarsi nel cuore della teoria dei numeri e confrontarsi direttamente con il più difficile problema irrisolto della matematica rispecchiava il suo disprezzo per i confini convenzionali. Fin dal suo arrivo sulla scena a metà degli anni Novanta, c’era nell’aria la sensazione che se mai esistesse qualcuno dotato delle risorse necessarie per sconfiggere quel problema di famigerata difficoltà, costui era Alain Connes.
Ma a quanto pareva non era stato Connes ad aver trovato l’ultima tessera di quel complicato puzzle. Nella sua e-mail Bombieri proseguiva spiegando come un giovane fisico che assisteva alla conferenza avesse visto «in un lampo» un modo di utilizzare il suo bizzarro mondo di «sistemi supersimmetrici fermionico-bosonici» per attaccare l’ipotesi di Riemann. Non erano molti i matematici a conoscere il significato di quel cocktail di termini tecnici da poco in voga fra i fisici delle particelle, ma Bombieri spiegava che esso descriveva «la fisica corrispondente a un insieme statistico molto vicino allo zero assoluto di una miscela di anioni e moroni con spin opposti». La faccenda suonava ancora alquanto oscura, ma in fondo si trattava della soluzione al problema più difficile della storia della matematica, per cui nessuno si aspettava che fosse una cosa semplice. Stando a Bombieri, dopo sei giorni di lavoro ininterrotto e grazie all’aiuto di un nuovo linguaggio di programmazione chiamato MISPAR, il giovane fisico aveva finalmente scardinato il problema più arduo della matematica.
Bombieri concludeva la sua e-mail con le parole: «Wow! Per favore date la massima diffusione a questa notizia». Per quanto straordinario fosse il fatto che un giovane fisico avesse finito per dimostrare l’ipotesi di Riemann, la notizia non era poi così sorprendente. Nel corso degli ultimi decenni era capitato molto spesso che matematica e fisica si trovassero avviluppate insieme. Pur essendo un problema al cui cuore stava la teoria dei numeri, da qualche anno l’ipotesi di Riemann mostrava delle risonanze inaspettate con alcuni problemi della fisica delle particelle.
I matematici si preparavano a cambiare i loro programmi di viaggio per volare a Princeton e condividere quel momento. Era ancora fresco il ricordo dell’eccitazione di pochi anni prima, quando Andrew Wiles, un matematico inglese, aveva annunciato la dimostrazione dell’ultimo teorema di Fermat nel corso di una conferenza tenuta a Cambridge nel giugno del 1993. Wiles aveva dimostrato che l’affermazione di Fermat secondo cui l’equazione xn + yn = zn non ha soluzioni per n maggiore di 2 era corretta. Non appena Wiles aveva posato il gessetto al termine della conferenza, i tappi delle bottiglie di champagne avevano cominciato a saltare e i flash delle macchine fotografiche a lampeggiare.
I matematici sapevano tuttavia che dimostrare l’ipotesi di Riemann avrebbe avuto un’importanza di gran lunga maggiore per il futuro della matematica di quanto non l’avesse sapere che l’equazione di Fermat non ammette soluzioni. Come Bombieri aveva scoperto alla tenera età di quindici anni, con l’ipotesi di Riemann si tentano di comprendere gli oggetti più fondamentali della matematica: i numeri primi.
I numeri primi sono i veri e propri atomi dell’aritmetica. Si definiscono primi i numeri interi indivisibili, cioè quelli che non possono essere scritti come prodotto di due numeri interi più piccoli. I numeri 13 e 17 sono primi, mentre il numero 15 non lo è, dato che può essere scritto come il prodotto di 3 e 5. I numeri primi sono gioielli incastonati nell’immensa distesa dei numeri, l’universo infinito che i matematici esplorano da secoli. Ai matematici i numeri primi infondono un senso di meraviglia: 2, 3, 5, 7, 11, 13, 17, 19, 23..., numeri senza tempo che esistono in un mondo indipendente dalla nostra realtà fisica. Sono un dono che la Natura ha fatto al matematico.
La loro importanza per la matematica deriva dal f...

Indice dei contenuti

  1. Cover
  2. Collana
  3. Frontespizio
  4. L'ENIGMA DEI NUMERI PRIMI