Detection of Drug Misuse
eBook - ePub

Detection of Drug Misuse

Biomarkers, Analytical Advances and Interpretation

Kim Wolff, Kim Wolff

Condividi libro
  1. 396 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Detection of Drug Misuse

Biomarkers, Analytical Advances and Interpretation

Kim Wolff, Kim Wolff

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Drug misuse and dependence is an ever evolving field of study, which has exploded over recent years owing to the advent of the internet. Due to the ever-growing number of young people using drugs recreationally and the privatisation of drug screening and detection services, there is the need to disseminate evidence-based information concerning the technology and methods available for studying this expanding field.

Detection of Drug Misuse describes the current state-of-the-art techniques used for identifying and confirming drug misuse as well as recent advances in biomarkers, instrumentation and analysis methodology. The title discusses both recreational and designer drugs, including non-addictive and addictive drugs.

This book is a useful and fascinating resource for healthcare professionals working in the field of drug misuse as well as academics and postgraduates researching within analytical, chromatography, medicinal and pharmaceutical chemistry; drug metabolism; addiction science; and forensic toxicology, science and medicine.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Detection of Drug Misuse è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Detection of Drug Misuse di Kim Wolff, Kim Wolff in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Medicina e Toxicología. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2017
ISBN
9781788012317
Edizione
1
Argomento
Medicina
Categoria
Toxicología
Section I
Analytical Advances in Drug Detection
1 Urinalysis: The Detection of Common Drugs in Urine
Michael David Osseltona
a Department of Archaeology, Anthropology and Forensic Science, Faculty of Science and Technology, Bournemouth University, Christchurch House, Fern Barrow, Poole, BH12 5BB, UK
*E-mail: [email protected]

1.1 Introduction and Historical Background

Mathieu Orfila,2 Robert Christison3 and Alfred Swaine Taylor1 were amongst the first early toxicologists in the 18th and 19th centuries to record the use of urine as an aid to poison detection.
“One of the strongest proofs of poisoning in the living subject is the detection of poison by chemical analysis in the matters vomited or in the urine, if the poison be one of those which are eliminated from the kidneys. The evidence is, of course, more satisfactory when the substance is discovered in the matter vomited or in the urine because it will show that the poison has really been taken, and will at once account for the symptoms.”1
At the time of Orfila, Christison and Swaine Taylor, the mechanisms by which poisons exerted their action in the body were unknown, and tests for the presence of poisons in urine were largely associated with administering the urine of suspected poisoning victims to animals, yet urine in the diagnosis and detection of drugs and poisons was later recognised as a valuable matrix for toxicological investigation. Only after the introduction of gas chromatography (GC) into forensic laboratories in the 1960’s were toxicologists able to move away from urine in order to explore the use of blood, where better interpretation can be made from analyses. Today, urine still occupies an important place in forensic, sports, clinical and workplace drug testing, thanks largely to developments in high-performance liquid chromatography linked to mass spectrometry (HPLC-MS).

1.2 Urinary Drug Excretion

Urine is produced in the kidneys and comprises water (>95%) together with the waste products of metabolism. The kidney plays a key function in maintaining the health of an individual by regulating the salt and water balance in the body and providing a route for the elimination of metabolic excretion products and toxic substances. Urine comprises a concentrated solution of filtered waste products that pass out of the body via the bladder. In the healthy individual, the urine is a clear, pale yellow fluid containing water (>95%), urea (∼2%), creatinine (∼0.1%; >2 mmol L-1 or >226 mg L-1) and small quantities of salts, together with water-soluble drugs and their metabolites. The normal glomerular filtration rate is approximately 120 mL minute-1. After reabsorption of salts, glucose and water in the proximal tubules of the kidney, the filtrate reaches the loop of Henle with the same osmotic pressure as plasma at a rate of approximately 20 mL minute-1. After reabsorption of water in the distil tubules, the final urine flow is less than 0.5 mL minute-1. The rate of urine production varies with age, such that a 1-week-old baby produces 50–800 mL 24 hours-1, a 3-year-old child produces 500–700 mL 24 hours-1, a 10-year-old produces 700–1400 mL 24 hours-1 and a healthy adult produces 800–2000 mL 24 hours-1.4
Normal urine has a specific gravity of greater than 1.025. Specimens with a specific gravity of less than 1.001 may indicate dilution caused by excessive fluid consumption, diabetes insipidus, impaired renal function resulting from a low number of functioning glomeruli or, in workplace drug testing scenarios, an attempt by the donor to dilute their urine specimen to try to confound the testing process. Although specific gravity is infrequently measured in post-mortem and criminal toxicology, it is regularly measured in workplace drug testing laboratories as a test for deliberate specimen dilution. The pH of urine is naturally variable and may range between 4.5 and 8.0.
Depending on the pH of the urine and the state of ionisation and/or water solubility of any drugs or their metabolites present in the glomerular filtrate, drugs and their metabolites become trapped in the urine and are subsequently excreted from the body. Although drug concentrations in the glomerulus are similar to those in blood, the reabsorption of water back into the blood as the urine passes through the convoluted tubules and loop of Henle results in increased drug concentrations in urine, such that drug concentrations may be between 10 and 100 times more concentrated in urine than those in the circulating blood.
As a matrix that is largely aqueous and free from proteins and cells in normal healthy individuals (cf. blood), where drug concentrations are usually significantly higher than in blood and where drugs may accumulate prior to elimination from the body, urine provides an ideal sample for drug screening. As a consequence of this concentration effect, drugs and their metabolites may be detected in urine long after they become undetectable in blood; hence, urine analysis provides an extended window of detection for the forensic or clinical analyst. Approximate time intervals for the detection of drugs in urine following single dose consumption are shown in Table 1.1.
Table 1.1 Approximate detection times for determining the presence of drugs and their metabolites in urine following the consumption of a single dose or therapeutic dose.a
Substance Detection time (hours)b
Alcohol <24
Amphetamine 24–36
Diazepam (including metabolites) 48–72
Temazepam 48–72
Flunitrazepam/7-amino flunitrazepam 48–72
THC 72
Cocaine <24
Benzoylecgonine 24–48
GHB (γ-Hydroxybutyrate) 10–12
Morphine 24–48
6-MAM (6-monoacetyl morphine) 12–24
Codeine 24–48
Methadone/EDDP 24–72
MDMA 24–48
Ketamine/norketamine 12–48
LSD <24...

Indice dei contenuti