A Walk Through Combinatorics
eBook - ePub

A Walk Through Combinatorics

An Introduction to Enumeration and Graph Theory

Mikl??s B??na

Condividi libro
  1. 616 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

A Walk Through Combinatorics

An Introduction to Enumeration and Graph Theory

Mikl??s B??na

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

-->

This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
A Walk Through Combinatorics è disponibile online in formato PDF/ePub?
Sì, puoi accedere a A Walk Through Combinatorics di Mikl??s B??na in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Business e Finance. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
WSPC
Anno
2016
ISBN
9789813148864
Edizione
4
Argomento
Business
Categoria
Finance

Chapter 13

Does It Clique? Ramsey Theory

Instead of coloring the vertices of our graphs, in this chapter we will color their edges. We will see that this leads to a completely different set of problems. Our first excursion into the land of infinite graphs is also part of this chapter.

13.1 Ramsey Theory for Finite Graphs

Example 13.1. Six people are waiting in the lobby of a hotel. Prove that there are either three of them who know each other, or three of them who do not know each other.
This statement is far from being obvious. We could think that maybe there is some case in which everyone knows roughly half of the other people, and in the company of any three people there will be two people who know each other, and two people who do not. We will prove, however, that this can never happen.
Solution. (of Example 13.1) Take a K6 so that each person corresponds to a vertex. Color the edge joining A and B red if A and B know each other, and blue if they do not. Do this for all 15 edges of the graph. The claim of the example will be proved if we can show that there will always be a triangle with monochromatic edges in our graph.
Take any vertex V of our bicolored graph. As V is of degree five, it must have at least three edges adjacent to it that have the same color. Let us assume without loss of generality that this color is red. Let X, Y and Z be the endpoints of three red edges adjacent to V. (The reader can follow our argument in Figure 13.1, where we denoted red edges by solid lines.)
Now if any edge of the triangle XY Z is red, then that edge, and the two edges joining (the endpoints of) that edge to V are red, so we have a triangle with three red edges. If the triangle XY Z does not have a red edge, then it has three blue edges.
figure
Fig. 13.1 The colors of the edges of the triangle XY Z are crucial.
This beautiful proof is our first example in Ramsey theory. This field is named after Frank Plumpton Ramsey, who was the first person to study this area at the beginning of the twentieth century.
We point out that the result is tight, that is, if there were only five people in the lobby of the hotel, then the same statement would be false. Indeed, take a K5, and draw it as a regular pentagon and its diagonals. Color all five sides red, and all five diagonals blue. As any triangle in this graph contains at least one side and at least one diagonal, there can be no triangles with monochromatic edges.
Instead of taking a K6, and coloring its edges red and blue, we could have just taken a graph H on six vertices in which the edges correspond to people who know each other. In this setup, the edges of H correspond to the former red edges, and the edges of the complement of H correspond to the former blue edges. As a complete subgraph is often called a clique, the statement of Example 13.1 can be reformulated as follows. If H is a simple graph on six vertices, then at least one of H and the complement of H contains a clique of size three.
The arguments used in the proof of Example 13.1 strongly depended on the parameter three, the number of people we wanted to know or not to know each other. What happens if we replace this number three by a larger number? Is it true that if there are sufficiently many people in the lobby, there will always be at least k of them who know each other, or k of them who do not know each other? The following theorem answers this question (in fact, a more general one), in the affirmative.
Theorem 13.2 (Ramsey theorem for graphs). Let k and be two positive integers, both of which is at least two. Then there exists a (minimal) positive integer R(k, ℓ) so that if we color the edges of a complete graph with R(k, ℓ) vertices red and blue, then this graph will either have a Kk subgraph with only red edges, or a K subgraph with only blue edges.
Note that any non-empty set of positive integers has a smallest element. Therefore, if we can show that there exists at least one positive integer with the desired property, then we will have shown that a smallest such integer exists.
Example 13.3. Example 13.1, and the discussion after it shows that R(3, 3) = 6. We also have trivial fact R(2, 2) = 2 relating to the graph with one edge.
Proof. (Of Theorem 13.2) We prove the statement by a new version of mathematical induction on k and . This ...

Indice dei contenuti