Understanding Motor Skills in Children with Dyspraxia, ADHD, Autism, and Other Learning Disabilities
eBook - ePub

Understanding Motor Skills in Children with Dyspraxia, ADHD, Autism, and Other Learning Disabilities

A Guide to Improving Coordination

Lisa A. Kurtz

Condividi libro
  1. 160 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Understanding Motor Skills in Children with Dyspraxia, ADHD, Autism, and Other Learning Disabilities

A Guide to Improving Coordination

Lisa A. Kurtz

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

The book is user-friendly and includes clear diagrams in each section, along with tables to outline key points. I found these very useful and they are an easy reference/ reminder, for example, they include a normal development chart, what assessments are available and their main aims.'

- National Association of Paediatric Occupational Therapists

Coordination problems often make everyday activities a challenge for children with learning disabilities. This accessible manual offers practical strategies and advice for helping children with coordination difficulties.

The author explains how to recognize normal and abnormal motor development, when and how to seek help, and includes specific teaching strategies to help children with coordination difficulties succeed in the classroom, playground, and home. She describes a wide range of therapeutic methods and provides a comprehensive list of resources.

Full of practical help, this is essential reading for anyone caring for, or working with, children with developmental motor concerns.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Understanding Motor Skills in Children with Dyspraxia, ADHD, Autism, and Other Learning Disabilities è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Understanding Motor Skills in Children with Dyspraxia, ADHD, Autism, and Other Learning Disabilities di Lisa A. Kurtz in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Éducation e Difficultés d'apprentissage. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2007
ISBN
9781846426728
Part I
UNDERSTANDING
THE NATURE
OF MOTOR SKILLS
Chapter 1
THE DEVELOPMENT OF MOTOR SKILLS
Normal motor development
Because the human nervous system is immature at the time of birth, children are expected to grow and develop continually throughout their childhood years. A number of factors combine to influence each child’s rate and quality of motor development. Genetic or inherited traits can greatly impact upon strength, agility, and general talent for physical challenges. For this reason, children born to parents of short stature and a tendency towards obesity may be less likely to become skilled basketball players than children born to tall, athletically built parents. Cultural and lifestyle differences among families also impact upon both the presence of opportunities to engage in challenging physical activity as well as the importance placed on these activities within the unique culture of the family. Children living in rural areas where parents encourage daily hiking, biking, or other healthy outdoor activities may be more motivated to challenge themselves physically than children living in an inner-city environment with parents who favor more sedentary pastimes. We know that, for successful motor learning, the child must receive frequent opportunities to physically explore his or her surroundings in order to develop an appreciation and awareness of the body interacting with the environment. That is why, when we think of very young children, we usually think of them being very active. It is typical for young children to want to run, climb, jump, and to practice balancing on a curbstone or throwing objects at a target. This is the natural way that children learn about their bodies and how they establish mastery over their environment.
The famous developmental psychologist Jean Piaget described the close association between perceptual learning and the development of physical proficiency (Piaget and Inhelder 1969). Early movements made by the very young infant are largely reflexive, or involuntary, in nature. The infant is exposed to a wide variety of perceptual experiences through all of the body’s senses. These include vision, hearing, touch, taste, smell, vestibular awareness (sense of gravity and motion that comes from receptors located in the vestibular apparatus in the inner ear) and proprioception (sense of body position and motion from joint and muscle receptors). Initially, these sensations are experienced passively as the infant is held, rocked, stroked, or fed. Gradually, the infant learns that certain involuntary, reflexive movements can result in pleasurable sensory experiences, and attempts to repeat the motions voluntarily in order to repeat the pleasurable sensation.
For example, very young infants possess a reflexive response called “rooting.” When one side of the face is lightly stroked, the infant turns his or her head toward that side. This is the instinctive way that the infant locates food, for the motion frequently results in locating the mother’s nipple when the child is held against her breast. This reflexive movement results in a pleasurable experience involving the smell and taste of food, the physical sensations of sucking, and the satisfying feel of a full tummy. In addition, the mother may provide a loving touch, calming stimulation through rocking, soft words of encouragement, and a pleasant smile with eye contact toward the infant. Virtually every sensory system of the body is stimulated in an emotionally positive manner as a result of the infant’s simple movement. When reflexive movements are repeated because the infant finds them to be pleasurable or rewarding, movement becomes active, or voluntary. In this way, we might think of motor learning as much as a mind–body process as a function of physical maturation.
Repetition is also an important concept in motor learning. New motor skills must be practiced, or rehearsed, in order to become strong, fluid, and well coordinated. Given enough practice, some movements become so automatic that we are hardly aware of them and need not attend to how well we are executing them. For example, an unexpected sneeze causes most people to automatically, quickly, and accurately bring their hand to their mouth. If the person is right handed, it is usually the right hand that is brought to the mouth, but if the right hand is otherwise engaged, for example stirring a pot of soup, the left hand will execute the motion just as accurately. Children who lack the motivation to learn, who do not enjoy physical challenges, or whose sensory perception results in confusing or unpleasant feedback from movement may not become sufficiently motivated to practice motor skills. As a result, they may show both a delay in developing certain motor skills, and a lack of automaticity, requiring them to think more about their movements than the average child.
For most children, the development of motor skills occurs throughout childhood, and follows certain predictable steps or stages, also known as developmental milestones. Most people who are familiar with children can describe at least some typical developmental milestones. For example, everyone knows that an infant must first learn to sit, then to pull up to standing, before finally taking a first step, usually sometime around one year of age. Other developmental motor sequences may be less familiar to those without professional training, but are equally as predictable. For example, when learning to grasp a small object such as a block, the infant first rakes or scratches at the object with the whole hand, then learns to precariously grasp the object with the side of the hand closest to the pinky finger, then with the side of the hand closest to the thumb, until finally, at around one year of age, he or she learns to grasp using the more precise method of opposing the thumb to the index and middle fingers.
We recognize that there is considerable variability in the development of each individual child. For example, on average boys tend to walk a little later than girls, and children born to the same family may learn to walk at different ages. Despite this, there is enough predictability in typical development to understand when and in what order or sequence certain milestones ought to develop. This allows us to identify children whose development is delayed or advanced when compared to other children the same age. For example, we would predict that frequent falling during running is normal for a child of 18 months, but is not normal for a five-year-old child, and that the inability to hold a crayon with the fingers is normal for an infant but not for a school-aged child. Table 1.1 presents an overview of typical developmental milestones in young children, including milestones that relate to the development of motor skills.
When a child’s rate of development differs slightly from the norm, there may or may not be cause for concern. However, even slight delays in motor development warrant monitoring.
Delayed or impaired motor development
Many childhood disorders include motor delay or clumsiness as part of the condition. For example, cerebral palsy is a condition occurring in very early childhood that involves damage to the parts of the brain that influence muscle tone and that control movement. Muscle tone is the amount of tension present in the muscles, and helps to prepare the muscles for action. In cerebral palsy, there may be too much tone (spasticity), too little tone (floppiness), or fluctuating tone. Children with cerebral palsy have a variety of difficulties affecting movement, and as a result are frequently very uncoordinated. In contrast, children with mental retardation demonstrate delays in all areas of development, and may appear to be clumsy when compared to othe...

Indice dei contenuti