How the Endocrine System Works
eBook - ePub

How the Endocrine System Works

J. Matthew Neal

  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

How the Endocrine System Works

J. Matthew Neal

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

How the Endocrine System Works is not another standard introduction to endocrinology, but an innovative and fun way to learn about the importance of the key glands in the human body and the hormones they control. It is explained in 9 easy-to-understand lectures, with additional material on the treatment and management of endocrine disorders. How the Endocrine System Works: •Is designed for those in need of a concise introduction to this fascinating area of medicine
•Has been rigorously updated to reflect today's endocrinology teaching
•Includes more focus on the treatment and management of endocrine disorders
•Features more on evidence-based medicine, obesity, epidemiology, and biostatistics
•Includes summaries of key research which affects diagnostic criteria
•Includes brand new case-based review questions at the end of each chapter
•Features full-color diagrams throughout How the Endocrine System Works is the perfect introduction for all medical students, as well as for students of bioscience, and other healthcare disciplines.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
How the Endocrine System Works è disponibile online in formato PDF/ePub?
Sì, puoi accedere a How the Endocrine System Works di J. Matthew Neal in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Medicine e Endocrinology & Metabolism. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2016
ISBN
9781118931462
Edizione
2
Argomento
Medicine

Lecture 1
An Overview

Endocrinology is the study of endocrine glands and their secretions. It can be a difficult topic to master because of all the mechanisms and feedback loops to understand. Yet, one way to understand the endocrine system is to break it down into smaller parts, and that is what I have attempted to accomplish in this book. It may help to visualize each endocrine system as part of a much larger group; envision a football team with all the players (quarterback, running backs, center, guards, receivers, punter, etc.). Each of these players must perform his job properly for the team to win. If even one player is out of sync, the play may be botched, even if the other players perform flawlessly. (In endocrinology, this happens frequently, as it does in other human disorders.) The quarterback is in charge of the team, calls the plays, and provides leadership. Hopefully your endocrine system has a good quarterback, but, as in football, some turn in lackluster performances, as do some supporting players.
Football teams often communicate plays with audible signals. Complex organisms also require detailed communication for proper function; they have developed hormones to send messages or commands from one part of the organism to another. Simple, one-celled organisms did not have a great need for detailed endocrine systems. But as organisms became more complex, large intercellular communication mechanisms became necessary for homeostasis.
The word “hormone” is derived from the Greek word meaning “arouse to activity.” To many lay people, the word “hormone” conjures up images of estrogen or thyroid replacement therapy. In fact, there are many types of hormones, with new ones discovered every day; some have greater significance than others.
The endocrine system sends signals to the body by secreting hormones (e.g., insulin, growth hormone, thyroxine) directly into the circulation. In contrast, the exocrine glands secrete their substances into a duct system (e.g., sweat glands, exocrine pancreas).
The endocrine system is composed of many different glands throughout the body. The endocrine glands may be divided into two categories. The first, or “classical” glands' functions are primarily endocrine in nature. The second, or “nonclassical” glands' primary functions are something else, but they also secrete important substances.
The “classical” endocrine glands include the anterior pituitary, thyroid, parathyroids, adrenal cortex and medulla, gonads (testes and ovaries), and the endocrine pancreas. The primary function of these glands is to manufacture specific hormones. Some nonclassical endocrine organs and their hormones include the heart (atrial natriuretic peptide), kidney (calcitriol, renin), lymphocytes (cytokines, interleukins), GI tract (gastrin, secretin, vasoactive intestinal peptide), and many others. Many of the “classical” hormones are under the control of the hypothalamus and pituitary, which may be thought of as extensions of the nervous system. Indeed, the nervous and endocrine systems may function together quite closely (neuroendocrinology).

FUNCTION OF HORMONES

So why are hormones so important, anyway? The first thing that an organism must have in order to survive is energy. Food must be converted into energy, excess energy needs to be converted to storage, and stored energy must be mobilized when necessary to meet the organism's needs. In the chapter on glucose metabolism, we will learn the effects of insulin and glucagon on the body's metabolism and the many disorders where things go awry. Thyroid hormones are important in the regulation of the body's metabolism. Glycogen and lipids are necessary to provide long-term energy needs when food is not available.
The organism must maintain its internal environment. This is not as easy as it sounds. Many hormones play a role here. Hormones such as antidiuretic hormone, aldosterone, and atrial natriuretic peptide are important in water and sodium balance. Calcium is necessary for many bodily functions, and its metabolism is regulated by parathyroid hormone and vitamin D. Several hormones, including thyroid hormones, growth hormone, and sex steroids, control growth and development. These all need to work together as a team for the body to exist in an orderly environment.
And, of course, reproduction is essential for the continued survival of any organism. Specialized reproductive organs (gonads) produce sex steroids that are necessary for spermatogenesis and ovulation (as well as normal growth and development). Gonads are under the complex control of the hypothalamic–pituitary axis (HPA).

COMPOSITION OF HORMONES

Hormones are made from a variety of different molecules. The vast majority of hormones are of the protein or peptide variety. Proteins are chains of amino acids linked together. Some of these peptide hormones are only a few amino acids in length; most are much larger, with some being over 200 amino acids in length. Even the very small protein vasopressin (a nonapeptide) looks quite complex.
Chemical structure of Tyrosine
Arginine Vasopressin
Glycoproteins are sort of a hybrid hormone, consisting of a peptide hormone associated with a carbohydrate moiety. The four human glycoprotein hormones include LH (luteinizing hormone), FSH (follicle-stimulating hormone), TSH (thyroid-stimulating hormone or thyrotropin), and human chorionic gonadotropin (β-hCG). These hormones all share a common alpha subunit (α-SU); the β subunits differ from one to another.
Instead of being linked together to form proteins, one or two amino acids may be modified to form hormones. The amino acid tyrosine is modified to form the catecholamines (e.g., epinephrine and norepinephrine). While technically two amino acids joined together form a peptide, these amino acids are usually modified in some manner. The catecholamine hormones are very important in the nervous system. The thyroid or iodothyronine hormones (thyroxine, triiodothyronine) are made by joining two modified tyrosine molecules and adding several iodine atoms.
Three-dimensional structure of Arginine Vasopressin
Tyrosine
Cholesterol, a molecule that we associate with atherosclerosis, is in fact essential to life. It is the precursor of steroid hormones—such as cortisol, aldosterone, estradiol, and testosterone—and sterol hormones, such as calcitriol.
Chemical structure of Cholesterol
Cholesterol
Another common hormone precursor is the lowly fatty acid (the major storage component of fat), which serves as a precursor of hormones called eicosanoids. The most important eicosanoids, the prostaglandins, are derived from arachidonic acid. Other eicosanoids include thromboxanes, leukotrienes, and prostacyclins. They are important in smooth muscle contraction, hemostasis, inflammatory and immunologic responses, circulation, and respiratory and gastrointestinal systems.
Simple ions such as calcium also have hormone-like effects, and calcium metabolism will be discussed in Lecture 6.

HOW HORMONES WORK

Hormones must have a way to tell the other cells what to do. The end effect of a hormone is usually at the nucleus, resulting in the production of a protein that has some effect on the cell. Some hormones go directly to the nucleus and have an effect there. These types of hormones tend to be ones that can easily traverse the cell membrane; for this to happen, the hormone usually must be “nonpolar” (non-charged). These include the steroid and iodothyronine hormones.
Image described by caption/surrounding text.
Hormones Interacting Directly with Nuclear or Cytoplasmic Receptors
The second class of hormones have no direct effect but instead bind to cell surface receptors, which initiates production of one or more second messengers that carry out the action. One messenger may trigger another messenger, which may trigger yet another, and so on. This concept of “multiple messengers” is called an amplification cascade and is the reason that some of these hormones are effective at extremely low concentrations (e.g., 10−12 mol/L). An analogy to the game of football would be a running back carrying the ball behind his blockers. Without the blockers, he is likely to be tackled quite quickly, ending the play abruptly; with multiple blockers, his power is “amplified” to the extent that many more yards can be gained than would have been possible alone. These hormones tend to be highly electrically charged, and include polypeptide, glycoprotein, and catecholamine hormones, and therefore cannot easily traverse the cell membrane....

Indice dei contenuti

Stili delle citazioni per How the Endocrine System Works

APA 6 Citation

Neal, M. (2016). How the Endocrine System Works (2nd ed.). Wiley. Retrieved from https://www.perlego.com/book/994503/how-the-endocrine-system-works-pdf (Original work published 2016)

Chicago Citation

Neal, Matthew. (2016) 2016. How the Endocrine System Works. 2nd ed. Wiley. https://www.perlego.com/book/994503/how-the-endocrine-system-works-pdf.

Harvard Citation

Neal, M. (2016) How the Endocrine System Works. 2nd edn. Wiley. Available at: https://www.perlego.com/book/994503/how-the-endocrine-system-works-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Neal, Matthew. How the Endocrine System Works. 2nd ed. Wiley, 2016. Web. 14 Oct. 2022.