Computational Number Theory and Modern Cryptography
eBook - ePub

Computational Number Theory and Modern Cryptography

Song Y. Yan

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Computational Number Theory and Modern Cryptography

Song Y. Yan

Book details
Table of contents
Citations

About This Book

The only book to provide a unified view of the interplay between computational number theory and cryptography

Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers.

  • Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application
  • Presents topics from number theory relevant for public-key cryptography applications
  • Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography
  • Starts with the basics, then goes into applications and areas of active research
  • Geared at a global audience; classroom tested in North America, Europe, and Asia
  • Incudes exercises in every chapter
  • Instructor resources available on the book's Companion Website

Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Computational Number Theory and Modern Cryptography an online PDF/ePUB?
Yes, you can access Computational Number Theory and Modern Cryptography by Song Y. Yan in PDF and/or ePUB format, as well as other popular books in Informatica & Crittografia. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2012
ISBN
9781118188613
Edition
1
Subtopic
Crittografia

Table of contents