Chapter 1
Introduction
An invention is usually considered a delightful new device or method that would make life better. Let us also look at some official definitions. The Oxford English Dictionary mentions that it could be a discovery, a fabrication, introduction of a new instrument, a design or plan, a figment of imagination, or a piece of music written by Bach.
The US Patent Office requires that for an invention to receive a patent, it should be new, inventive, and useful or industrially applicable. It is possible to be new without being inventive, such as a scientific discovery that may have no immediate practical application. The Patent Office defined four general categories of inventions: (a) a process or a method, (b) a machine, (c) a manufacture, and (d) a composition of matter. A significant improvement can be patentable, but an idea or suggestion must be accompanied with a complete description of the actual machine, and reduction to practice is often required. The patent gives the owner the exclusive right to use the invention for a number of years, such as 20 years, and can license the right to another party for considerations. The owner can also sue anyone infringing on the patent without a contract and payments. In practice, it is very easy to detect infringement on a patented product when it is sold in the market to many customers, and somewhat more difficult to detect the presence of a patented matter in a manufactured product. The most difficult to enforce is a patented machine or method that is installed in a factory not open to the public without a search warrant.
We usually think of inventions as providing the means to satisfy our material needs, such as for food, clothing, and shelter. For these purposes, we have invented the tools of agriculture, of spinning and weaving, and of beams and roofs. Our spiritual needs such as knowledge, beauty, truth, and justice are also supported by inventions and technology—including the ability to record and print words and pictures, and to communicate to people far away and to future generations. There are very few revolutionary breakthrough inventions on brand new technologies, such as penicillin and transistors. Most inventions are based on making improvements on an existing technology to make it more effective or efficient such as vulcanized rubber, or finding a new use for an old material such as using ether for painless surgery and childbirth.
What is a great invention? An invention adds to the store and power of technology, which bestows benefits (and sometimes harm) on our work, lives, society, and the environment. We value an invention according to a number of criteria including: (a) the audacity of the technology over the existing technologies, (b) the expansion of our capabilities to perform tasks that were considered impossible, and to open doors to exciting new possibilities, and (c) the valuable and long lasting benefits that it brings to many people.
The greatest inventions make dramatic breakthroughs, and open new eras in human history. Consider the lives of early men in East Africa about 4 million years ago without the sharp teeth of lions to tear meat. The stone axe was the first great invention that allowed our ancestors to eat the food of lions, and set us on the path of independence from our meager tools of teeth and claws bestowed by nature, as we could invent a whole arsenal of new and powerful tools. Fire led to the invention of cooking and softened tough meat and cereal as food, to ceramics and metallurgy, and to the colonization of the frozen north. Agriculture led to much greater and more secure food production, and allowed people to settle in villages and cities. The steam engine led to tireless power for manufacturing and transportation and to a burst of productivity increase and the Industrial Revolution. Modern sanitation and the germ theory lowered the rate of infant mortality, so that it is no longer necessary to have six children to ensure that two would survive to adulthood. Each generation of human society inherited a much bigger toolbox of technology from the previous generations, and can enrich it by the constant addition of ever more new inventions to benefit the next generation.
A drug that cures lung cancer would benefit millions of people, and would be considered more important than a drug for a rare disease that affects only thousands, according to the Jeremy Bentham principle of greatest happiness for the greatest numbers. Bentham also specified that happiness should be ranked by intensity, duration, and certainty. An invention that keeps us alive is more valued than an invention that improves our vanity; an invention that remains in use for many years is valued more than inventions that are quickly replaced; and a drug that always works is better than one that works only some of the time.
The direct benefits of an invention can be obvious, such as fire providing warmth and light. The unintended indirect benefits (or harm) are often slower in coming but can be far more important, such as fire leading to cooking which softened tough grains, and made possible pottery, bronze, and iron. The synthetic dye mauve was invented by William Perkin in 1856 and was used for only a short period of time before it was replaced by newer and better dyes, but its success inspired many chemists and entrepreneurs, and subsequently gave rise to many new synthetic dyes and synthetic drugs, such as sulfonamide. These new drugs became the foundation of the modern pharmaceutical industry, and saved millions of lives. Freon was a refrigerant introduced in 1920 that made possible safe home refrigerators without the hazards of fire and toxic leaks, but it accumulated in the atmosphere for many decades and led to the ozone hole and global warming, which made it no longer suitable.
1.1 Inventors and Inventions
Consider where and when great inventions were made, who made these inventions, what motivated them, what were their methods, and how revolutionary were their inventions?
1.1.1 Cradles of Inventions
In the past several hundred years, the most inventive places on earth were in Western Europe and later in North America as well. Is there an association between climate and inventions? Let us use the Köppen Climate Classification scheme, which is based on the distribution of temperatures and rainfall of each month in the year. Mellinger, Sachs, and Gallup observed that the temperate zones within 100 km of the ocean or a sea-navigable waterway accounts for only 8% of the world land area, but has 23% of the population, and 53% of the GDP of the world. It is also the most inventive area in the modern world, with the highest standard of living.
The most inventive places in the ancient world were in the dry climate (Mesopotamia, Egypt) and located at large rivers. The more recent inventive and economically successful places tend to be in the humid temperate zone (Athens, Rome, London, Xi'an, Philadelphia), and less often in the humid cool zone (Beijing, Boston, Berlin). The tropical humid equatorial climate of the Amazon and Congo supports a large population, but is not very inventive; the cold polar and the highland climates support little population, and are not inventive.
However, the ancient cradles of the most important inventions came from the tropics, and gradually migrated to warm subtropical climates, and later to cool temperate zones. Let us look at this migration for six great inventions: the stone axe was from Olduvai Gorge in Tanzania (latitude 5°S) 2 million years ago; fire was first mastered at Zhoukoudian in China (40°N) 500,000 years ago; agriculture began in the Fertile Crescent (33°N) 10,000 years ago; writing began in Mesopotamia (33°N) 3,500 years ago; the steam engine was established in Scotland (56°N) in 1750; and the electronic digital computer began in the United Kingdom (51°N) and the United States (41°N) around 1950–2000. They exhibit a steady northward movement with time.
The climates of Eurasia and North America were not always the same throughout human history. The world climate turned distinctly colder from Pliocene to Pleistocene 2 million years ago, perhaps by as much as 2–6°C in comparison with the year 1950, and much of Northern Europe and America were under sheets of ice. The ice age ended at the beginning of Holocene 10,000 years ago, and the world began to warm up significantly.
Why did most great inventions arise in these temperate places, and why at that moment in time? The most frequently cited requirements to support inventions include the following:
1. Environment. The hunter–gatherers need a healthy and agreeable climate with warmth, rainfall, and soil, suitable for the growth of plants and animals for food. The farmers need to find local plants and animals that can be domesticated, stone and clay for construction, trees for fuel, and ores for metallurgy. The temperate climate provides the stimulus of a change of seasons and cyclonic storms, and gives the residents challenges to keep them alert with problems to solve. Arnold Toynbee proposed the Golden Means theory on the genesis of a civilization. A group of people can live in comfortable torpor for a long time, and would need a stimulus or a challenge in order to respond and move into a dynamic creative state. There are various stimuli, such as living in a hard country and environment, moving to a new habitat, external blows from enemies, internal pressures, and penalty in comparison with other groups. If the stimulus is necessary to wake one from contented torpor then would more stimuli always lead to better responses? He proposed that challenges should be large enough to be stimulating, but not too large to be overwhelming. He gave the following examples as illustration:
- The Vikings living in Scandinavia had a mild climate during the Viking Age, and were not sufficiently challenged to produce much literature; but the Vikings in Iceland were exposed to a bleak and barren environment and made greater achievements in literature; and the Vikings living in Greenland had an even more bleak and barren settlement, and were barely able to survive and had no time for literature.
- The Europeans that settled in North America at Virginia and the Carolinas had a comfortable life, and made few contributions to literature; the settlers in Massachusetts had a more harsh climate and stony soil, and were sufficiently challenged to achieve leadership in intellect and commerce; the settlers in Maine and Nova Scotia had scanty livelihoods and no time for literature.
If we rank the climate zones according to the degree of challenge, we may obtain the following from the least challenging to the most challenging, and the optimum is presumably somewhere in the middle: humid equator < humid temperate < humid cold < dry < highland < polar. Environment alone is insufficient to explain why North America was dormant before Columbus, and became a world leader after 1950.
2. Contacts and Heritage. Inventors build on the stimulus of previous technologies, which they inherited from their ancestors; they also learn from neighbors and visitors that they meet. They need access to transportation in order to trade and to communicate with other people, and to learn new ideas and technology. Jared Diamond argued that the various people of temperate Eurasia can travel 13,000 km from Western Europe to East Asia without a change in climate, and can learn and adopt inventions and ideas from other people. On the other hand, the peoples of North and South America became a series of isolated communities as a similar trip of 13,000 km from the Bering Strait to Tierra del Fuego would involve crossing numerous climate zones, with the need to adapt to new food sources and enemies, and to stay warm or cool. The people of Oceania were likewise isolated from the Eurasian inventive communities. This requirement of heritage and contact does not explain why Africa did not continue to be inventive after a glorious start, or the long sleep of Rome between Justinian and the Renaissance, the sudden birth of the Islamic civilization with Mohammed, and the long silence of Mongolia after Genghis and Kublai Khan.
3. Soul and Leadership. The creativity and dynamism of a civilization, as well as subsequent stagnation and decline, have many causes that are difficult to analyze and explain. One can put together a long list of influences: internal tradition, philosophy, religion, external challenges, optimism, stability and security, openness to new ideas, and willingness to adopt progressive ideas and to reward innovators. Charismatic leaders are possibly the most important requirement. Oswald Spengler believed that each great civilization has a soul, which runs through the course of a thousand years from the awakening of barbarism to growth of a new civilization, from expansion to the zenith of empire, to decline and eventual decadence. His Apollonian soul is the Greco-Roman civilization, and his Faustian soul is the Western civilization from Merovingian to now. This explanation can be viewed as an inspired oracle instead of a scientific method, as it gives no principles to predict the arrival of the future souls.
1.1.2 Creativity
We have very little knowledge of the inventors of the first stone axe, who lived in East Africa some 2–3 million years ago. After the invention of writing, we begin to have written documents and some infor...