Plant Breeding
eBook - ePub

Plant Breeding

Jack Brown, Peter Caligari, Hugo Campos

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Plant Breeding

Jack Brown, Peter Caligari, Hugo Campos

Book details
Book preview
Table of contents
Citations

About This Book

This book, Plant Breeding, has it bases in an earlier text entitled An Introduction to Plant Breeding by Jack Brown and Peter Caligari, first published in 2008. The challenges facing today's plant breeders have never been more overwhelming, yet the prospects to contribute significantly to global food security and farmers' quality of life have never been more exciting and fulfilling. Despite this there has been a worrying decline in public funding for plant breeding-related research and support for international centers of germplasm development and crop improvement. In part, this has resulted in a serious reduction in the number of young people interested in devoting their professional careers to plant breeding as well as the number of universities offering plant breeding courses or conducting relevant research in plant breeding. The authors' aim in writing this book is to provide an integrated and updated view of the current scientific progress related to diverse plant breeding disciplines, within the context of applied breeding programs. This excellent new book will encourage a new generation of students to pursue careers related to plant breeding and will assist a wider audience of agricultural students, agronomists, policy makers and those with an interest in agriculture in gaining insight about the issues affecting plant breeding and its key role in improving the quality of life of people and in securing sufficient food, at the quality required and at an affordable price.

With comprehensive coverage including questions designed for students, and an accompanying website containing additional material to help in the study of the subject, Plant Breeding is an ideal text for all those studying plant and crop sciences, and a convenient reference source for professionals working in the area. All libraries within universities and research establishments where biological and agricultural sciences are studied and taught should have multiple copies of this book.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Plant Breeding an online PDF/ePUB?
Yes, you can access Plant Breeding by Jack Brown, Peter Caligari, Hugo Campos in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Agriculture. We have over one million books available in our catalogue for you to explore.

Information

Year
2014
ISBN
9781118873526
Edition
2

Chapter 1
Introduction

1.1 Requirements of plant breeders

The aim of plant breeding is to develop genetically superior cultivars that are adapted to specific environmental conditions and suitable for economic production in a commercial cropping system. These new, and more productive cultivars, are increasingly necessary to fulfil humankind's escalating needs for food, fibre and fuels.
The basic concept of varietal development is rather simple and involves three distinct operations:
  • produce or identify genetically diverse germplasm from which segregating breeding populations are developed;
  • carry out selection procedures on phenotypes or genotypes from within this germplasm to identify superior genotypes with specific improved characteristics;
  • stabilize and multiply these superior genotypes and release cultivars for commercial production.
The general philosophy underlying any breeding scheme is to maximize the probability of creating, and identifying, superior genotypes which will make successful new cultivars; in other words, genotypes that will contain all the desirable characteristics/traits necessary for use in a given production system, or at least offer a beneficial trade-off between key advantageous characteristics compared with undesirable ones.
Plant breeders can be categorized into two types. One group of plant breeders is employed within private companies, while the other group works in the public sector (e.g. government-funded research institutes or universities). Private sector and public sector breeders often have different approaches to the breeding process. Many of the differences that exist between public and private breeding programmes are related to the time available for variety release, types of cultivar developed, and priorities for traits in the selection process.
Plant breeders within the public sector are likely to have a number of responsibilities related to academic activities or extension services, in addition to those solely directed towards producing new varieties. Public sector breeders also play an additional, often unappreciated yet critical role: the attraction, training and development of a younger generation of men and women interested in plant breeding. As plant breeding is a combination of science and art, the personal component of training plant breeders at the graduate level is generally recognized as more relevant and significant than in most other areas of science.
Private sector plant breeders tend to have a more clearly defined goal: developing new cultivars and doing it as quickly as possible. In addition, many private breeding organizations are, or are associated with, biotechnology and/or agrochemical companies. As a result, varietal development may be designed to produce cultivars suitable for integration within a specific production system. In many countries, including the US, the ratio of private to public breeders has increased over time, particularly in those highest acreage crops such as maize, soybeans and canola, to mention just a few, as well as in crops with a high profit, such as tomato, pepper and lettuce, where private companies can gain greatest financial returns from seed or chemical sales.
Despite the apparently simple description of the breeding process given above, in reality plant breeding involves a multidisciplinary and long-term approach. Regardless of whether a breeding scheme is publicly or privately managed, a successful plant breeder will require knowledge in many (if not all) of the following subjects:
  1. Evolution It is necessary to have knowledge of the origins and past progress in adaptation of crop species if additional advances are to continue into the future. When dealing with a crop species, a plant breeder benefits from knowledge of the timescale of events that have modelled the given crop. For example, the time of domestication, geographical area of origin and prior improvements are all important and will help in setting feasible future objectives. In the case of crops where hybridization systems are commercially available, such as canola and corn, the evolution from OP (open pollinated) to hybrid cultivars represents a landmark driving profound changes in ensuing breeding programmes.
  2. Botany The raw material of any breeding scheme is the available germplasm (lines, genotypes, accessions, etc.) from which agronomically relevant variation can be exploited. The biological relationship that exists within a species and with other species will be a determining factor indicating germplasm variability and availability.
  3. Biology Knowledge of plant biology is essential to create genetic variation and formulate a suitable breeding and selection scheme. Of particular interest are modes of reproduction, types of cultivar and breeding systems.
  4. Genetics The creation of new cultivars requires manipulation of genotypes and genes. The understanding of genetic processes is therefore essential for success in plant breeding. Genetics is an ever-developing subject, but knowledge and understanding that is particularly useful will include single gene inheritance, population genetics, the expected frequencies of genotypes under selection, and the prediction of quantitative genetic parameters – all of which will underlie decisions on what strategy of selection will be most effective.
  5. Pathology A major goal of plant breeding is to increase productivity and quality by selecting superior genotypes. A limiting factor in economic production is the impact of pests and diseases. Therefore developing cultivars that are resistant to detrimental pathogens has been a major contributor to most cost-effective production with reduced agrochemical inputs. Similarly, nematodes, insect pests and viruses can all have detrimental effects on yield and/or quality. Therefore plant breeders must also have knowledge of phytopathology, nematology, entomology and virology.
  6. Weed science The response of a genotype to competition from weed populations will have an effect on the success of a new cultivar. Cultivars that have poor plant establishment, or lack subsequent competitive ability, are unlikely to be successful, particularly in systems where reduced, or no, herbicide applications are desirable, or their use is restricted. Similarly, in many cases genotypes respond differently, even to selective herbicides. Herbicide tolerance in new crops is looked upon favourably by many breeding groups, although cultivar tolerance to broad-spectrum herbicides can cause management difficulties in crop rotations. Herbicide tolerance brought about by traditional breeding as well as through recombinant DNA techniques has also driven changes in plant breeding approaches.
  7. Food science Increasingly end-use quality is being identified as one of the major objectives of all crop-breeding schemes. As most crop species are grown for either human or animal consumption, knowledge of food nutrition and other related subjects is important.
  8. Biometry Managing a plant-breeding scheme has aspects that are no different from organizing a series of large experiments over many locations and years. To maximize the probability of success it is necessary to use an appropriate experimental approach at all stages of the breeding scheme. Plant breeding is continually described as ‘a numbers game’. In many cases this is true, and successful breeding will result in vast datasets on which selection decisions are to be made. These decisions often have to be made under significant time constraints, f...

Table of contents