Spectral Analysis
eBook - ePub

Spectral Analysis

Parametric and Non-Parametric Digital Methods

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Spectral Analysis

Parametric and Non-Parametric Digital Methods

About this book

This book deals with these parametric methods, first discussing those based on time series models, Capon's method and its variants, and then estimators based on the notions of sub-spaces. However, the book also deals with the traditional "analog" methods, now called non-parametric methods, which are still the most widely used in practical spectral analysis.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Spectral Analysis by Francis Castanié in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Signals & Signal Processing. We have over one million books available in our catalogue for you to explore.

PART I

Tools and Spectral Analysis

Chapter 1

Fundamentals 1

1.1. Classes of signals

Every signal-processing tool is designed to be adapted to one or more signal classes and presents a degraded or even deceptive performance if applied outside this group of classes. Spectral analysis too does not escape this problem, and the various tools and methods for spectral analysis will be more or less adapted, depending on the class of signals to which they are applied.
We see that the choice of classifying properties is fundamental, because the definition of classes itself will affect the design of processing tools.
Traditionally, the first classifying property is the deterministic or non-deterministic nature of the signal.

1.1.1. Deterministic signals

The definitions of determinism are varied, but the simplest is the one that consists of calling any signal that is reproducible in the mathematical sense of the term as a deterministic signal, i.e. any new experiment for the generation of a continuous time signal x(t) (or discrete time x(k)) produces a mathematically identical signal. Another subtler definition, resulting from the theory of random signals, is based on the exactly predictive nature of x(t)t > t0 from the moment that it is known for t < t0 (singular term of the Wold decomposition for example; see Chapter 4 and [LAC 00]). We will discuss here only the definition based on the reproducibility of x(t), as it induces a specific strategy on the processing tools: as all information of the signal is contained in the function itself, any bijective transformation of x(t) will also contain all this information. Representations may thus be imagined, which, without loss of information, will demonstrate the characteristics of the signal better than the direct representation of the function x(t) itself.
The deterministic signals are usually separated into classes, representing integral properties of x(t), strongly linked to some quantities known by physicists.
Finite energy signals verify the integral properties [1.1] and [1.2] with continuous or discrete time
[1.1]
image
[1.2]
image
We recognize the membership of x(t) to standard function spaces (noted as L2 or l2 respectively), as well as the fact that this integral, to within some dimensional constant (an impedance in general), represents the energy E of the signal.
Signals of finite average power verify:
[1.3]
image
[1.4]
image
If we accept the idea that the sums of equation [1.1] or [1.2] represent “energies”, those of equation [1.3] or [1.4] then represent powers.
It is clear that these integral properties correspond to mathematical characteristics whose morphological behavior along the time axis is very different: the finite energy signals will be in practice “pulse shaped”, or “transient” signals such that |x(t)| → 0 for |t| ∞. This asymptotic behavior is not at all necessary to ens...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Preface
  5. Specific Notations
  6. Part I: Tools and Spectral Analysis
  7. Part II: Non-Parametric Methods
  8. Part III: Parametric Methods
  9. List of Authors
  10. Index