Waste Treatment and Disposal
eBook - ePub

Waste Treatment and Disposal

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Waste Treatment and Disposal

About this book

Following on from the successful first edition of Waste Treatment & Disposal, this second edition has been completely updated, and provides comprehensive coverage of waste process engineering and disposal methodologies. Concentrating on the range of technologies available for household and commercial waste, it also presents readers with relevant legislative background material as boxed features.

NEW to this edition:

  • Increased coverage of re-use and recycling
  • Updating of the usage of different waste treatment technologies
  • Increased coverage of new and emerging technologies for waste treatment and disposal
  • A broader global perspective with a focus on comparative international material on waste treatment uptake and waste management policies

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Waste Treatment and Disposal by Paul T. Williams in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Environmental Management. We have over one million books available in our catalogue for you to explore.

1

Introduction

Summary

This chapter is an historical introduction to waste treatment and disposal. The development of waste management in the European Union through the use of various policy, strategy and legislative measures are discussed. The adoption of sustainable development by the EU through the various Environment Action Programmes is presented. The main EU Directives, Decisions and Regulations in relation to waste management are described. The Waste Strategy of the EU is presented and the policy initiatives related to its implementation are discussed. The economics of waste management across Europe are discussed. The main treatment and disposal routes for wastes in the European Union are briefly described.

1.1 History of Waste Treatment and Disposal

The need for adequate treatment and disposal of waste by man, arose as populations moved away from disperse geographical areas to congregate together in communities. The higher populations of towns and cities resulted in a concentration of generated waste, such that it became a nuisance problem. Waste became such a problem for the citizens of Athens in Greece that, around 500 BC, a law was issued banning the throwing of rubbish into the streets. It was required that the waste be transported by scavengers to an open dump one mile outside of the city. The first records that waste was being burned as a disposal route appear in the early years of the first millennium in Palestine. The Valley of Gehenna outside Jerusalem contained a waste dump site at a place called Sheol where waste was regularly dumped and burned. The site became synonymous with hell.
Throughout the Middle Ages, waste disposal continued to be a nuisance problem for city populations. Waste was often thrown onto the streets causing smells and encouraging vermin and disease. For example, in 1297 a law was passed in England requiring house­holders to keep the front of their houses clear of rubbish. More than a 100 years later, in 1408, Henry IV ruled that waste should be kept inside houses until a ‘raker’ came to cart away the waste to pits outside the city (Project Integra 2002). In 1400 in Paris, the huge piles of waste outside the city walls began to interfere with the city defences.
In Europe, the industrial revolution between 1750 and 1850 led to a further move of the population from rural areas to the cities and a massive expansion of the population living in towns and cities, with a consequent further increase in the volume of waste aris­ing. The increase in production of domestic waste was matched by increases in industrial waste from the burgeoning new large-scale manufacturing processes. The waste gener­ated contained a range of materials such as broken glass, rusty metal, food residue and human waste. Such waste was dangerous to human health and, in addition, attracted flies, rats and other vermin which, in turn, posed potential threats through the transfer of disease. This led to an increasing awareness of the link between public health and the environment.
To deal with this potential threat to human health, legislation was introduced on a local and national basis in many countries. For example, in the UK, throughout the latter half of the nineteenth century, a series of Nuisance Removal and Disease Prevention Acts were introduced in the UK which empowered local authorities to set up teams of inspectors to deal with offensive trades and to control pollution within city limits. These Acts were reinforced by the Public Health Acts of 1875 and 1936, which covered a range of meas­ures some of which were associated with the management and disposal of waste. The 1875 Act placed a duty on local authorities to arrange for the removal and disposal of waste. The 1936 Act introduced regulation to control the disposal of waste into water and defined the statutory nuisance associated with any trade, business, manufacture or process which might lead to degradation of health or of the neighbourhood (British Medical Association 1991; Reeds 1994; Clapp 1994). In the US, early legislation included the 1795 Law introduced by the Corporation of Georgetown, Washington DC, which prohibited waste disposal on the streets and required individuals to remove waste them­selves or hire private contractors. By 1856, Washington had a city-wide waste collection system supported by taxes. In 1878, the Mayor of Memphis organised the collection of waste from homes and businesses and removal to sites outside the city. By 1915, 50% of all major US cities provided a waste collection system which had risen to 100% by 1930 (Neal and Schubel 1989; McBean et al 1995).
One of the main constituents in domestic dust bins in the late nineteenth century was cinders and ash from coal fires, which represented a useful source of energy. The waste also contained recyclable materials such as old crockery, paper, rags, glass, iron and brass and was often sorted by hand by private contractors or scavengers to remove the useful items. Much household waste would also be burnt in open fires in the living room and kitchen as a ‘free fuel’ supplement to the use of coal. The combustible content of the waste was recognised as a potential source of cheap energy for the community as a whole and the move away from private waste contractors to municipally organised waste collection, led to an increase in incineration. Purpose-built municipal waste incinerators were intro­duced in the UK in the late 1870s and, by 1912, there were over 300 waste incinerators in the UK, of which 76 had some form of power generation (Van Santen 1993). One of the first municipal incinerators introduced in the US was in 1885 in Allegheny, Pennsylvania (Neal and Schubel 1989). By 1914, there were about 300 waste incinerators in the US. However, many of the waste incinerators were small-scale, hand-fed plants which were poorly designed and controlled and their operation was not cost-effective.
However, the growth of incineration was secondary to the main route to disposal, which was dumping, either legally or illegally. The ease of waste disposal to land and the move to centralised waste management through town or city authorities meant that this route increasingly became the preferred waste disposal option. Particularly as incineration plants were difficult and expensive to maintain. As these incineration plants reached the end of their operational lifetime they tended to become scrapped in favour of landfill. The waste dumps themselves however, were poorly managed, open tips, infested with vermin and often on fire. The environmental implications of merely dumping the waste in such open sites was recognised, and increasingly waste began to be buried. Burying the waste had the advantages of reducing odours and discouraging rats and other vermin and consequently the sites became less dangerous to health. Through the first half of the 20th century some improvements in landfill sites were seen, with improved site planning and site management. However, this did not apply to all areas and many municipal sites still had the minimum of engineering design and the open dump was still very common. When such sites were full, they were covered with a thin layer of soil and there was minimum regard to the effects of contaminated water leachate or landfill gas emissions from the disused site (McBean et al 1995).
The First and Second World Wars and the inter-war periods saw a rise in waste reclamation and recycling, and waste regulation and the environment became a less important issue. Following the Second World War, waste treatment and disposal was not seen as a priority environmental issue by the general public and legislature, and little was done to regulate the disposal of waste. However, a series of incidents in the late 1960s and 70s, high­lighted waste as a potential major source of environmental pollution. A series of toxic chemical waste dumping incidents led to increasing awareness of the importance of waste management and the need for a more stringent legislative control of waste. Amongst the most notorious incidents were the discovery, in 1972, of drums of toxic cyanide waste dumped indiscriminately on a site used as a children’s playground near Nuneaton in the UK, the leaking of leachate and toxic vapours into a housing development at the Love Canal site, New York State in 1977, the dumping of 3000 tonnes of arsenic and cyanide waste into a lake in Germany in 1971, and the leak of polychlorinated biphenyls (PCBs) into rice oil in Japan in 1968, the ‘Yusho’ incident (Box 1.1, British Medical Association 1991).
The massive adverse publicity and public outcry led to pressure for the problem of waste disposal to be more strictly controlled by the legislature. In the UK, as a direct result of the Nuneaton cyanide dumping incident, emergency legislation was introduced in the form of The Deposit of Poisonous Waste Act, 1972. Further legislation on waste treatment and disposal followed in 1974 with the Control of Pollution Act, which controlled waste disposal on land through a new licensing and monitoring system for waste disposal facilities. The late 1980s and 1990s saw further development of waste management legis­lation in the UK and the increasing influence of European Community legislation. For example; the 1990 Environmental Protection Act; the 1995 Environment Act; the 1994 Waste Management Licensing Regulations; 1994 Transfrontier Shipment of Waste Regulations; the 1996 Special Waste Regulations; the 2000 Pollution Prevention and Control Regulations and the Landfill Regulations 2002, which all contain measures in direct response to EC Directives.
Box 1.1 Waste Disposal Incidents which Influenced Waste Management and Legislation
1. Love Canal, Niagara City, New York State, USA: 1977
Love Canal, Niagara City was an unfinished canal excavated for a projected hydroelectricity project. The abandoned site was used as a dump for toxic chemical waste and more than 20 000 tonnes of waste containing over 248 different identified chem­icals were deposited in the site between 1930 and 1952. Following the sale of the plot in 1953, a housing estate and school were built on the site. In 1977 foul smelling liquids and sludge seeped into the basements of houses built on the site. The dump was found to be leaking and tests revealed that the air, soil and water around the site were contaminated with a wide range of toxic chemicals, including benzene, toluene, chloroform and trichloroethylene. Several hundred houses were evacuated and the site was declared a Federal Disaster Area. There were also later reports of ill health, low growth rates for children and birth defects amongst the residents. As the actual and projected clean-up costs of the site became known, legislation in the form of the Comprehensive Environmental Response, Compensation and Liabilities Act, 1980, was introduced by Congress. This legislation placed the responsibility and cost of clean-up of contaminated waste sites back to the producers of the waste.
Source: British Medical Association 1991.
2. Cyanide Dumping, Nuneaton, Coventry, Warwickshire, UK: 1972
A series of toxic waste dumping episodes occurred in the early months of 1972. The most serious of which was the dumping of 36 drums of sodium cyanide in a disused brickworks at Nuneaton, on the outskirts of Coventry. The site was in constant use as a play area by local children. The drums were heavily corroded and contained a total of one and a half tonnes of cyanide, enough, police reported, to wipe out millions of people. Over the following weeks and months further incidents of toxic waste dumping were reported extensively in the press. Drums of hazardous waste were found in numerous unauthorised sites including a woodland area and a disused caravan site. The episodes generated outrage in the population, and emergency legislation was rushed through Parliament in a matter of weeks in the form of The Deposit of Poisonous Waste Act, 1972. The new Act introduced penalties of five years imprisonment and unlimited fines for the illegal dumping of waste, in solid or liquid form, which is poisonous, noxious or polluting. The basis of the legislation was the placing of responsibility for the disposal of waste on industry. Further legislation on waste treatment and disposal followed in 1974 with the Control of Pollution Act.
Source: The Times 1972.
In the US, in response to the increasing concerns of indiscriminate waste disposal, landmark legislation covering waste disposal was developed with the Resource, Conser­vation and Recovery Act (RCRA) 1976, which initiated the separation and defining of hazardous and non-hazardous waste and the separate requirements for their disposal. The RCRA was an amendment to the 1965 Solid Waste Disposal Act which was the first Federal statutory measure to improve solid waste disposal activities. However, it was the RCRA which embodied the US approach to waste treatment and disposal, establishing a framework for national programs to achieve environmentally sound management of both hazardous and non-hazardous wastes. The Act has been amended several times since 1976, by such as the Hazardous and Solid Waste Amendments of 1984, the Federal Facilities Compliance Act of 1992 and the Land Disposal Program Flexibility Act of 1996.

1.2 European Union Waste Management Policy

The European Union had its origins in the European Economic Community (EEC) which was established by the Treaty of Rome in 1958. Since then a series of Acts and Treaties, including the Single European Act (1987), the Maastricht Treaty (1993) and the Treaty of Amsterdam (1997) have resulted in the development of the organisation and governance of the European Union (Box 1.2). Included in these Acts and Treaties are the general objectives of protecting and improving the quality of the environment. Additionally, more detailed policy statements in relation to the environment are included in Environmental Action Programmes. These Action Programmes include EU policy development in relation to waste treatment and disposal. There have been six Environmental Action Programmes since 1973. The approach and strategy in terms of waste in the successive Environmental Action Programmes has been from one of pollution control to pollution prevention and latterly to a sustainable development approach (Gervais 2002(b)). The First Environmental Action Programme (1973–76) regarded waste as a remedial problem requiring control at Community level. The Second (1977–81) and Third (1982–86) Environmental Action Programmes emphasised the need for waste prevention, recycling, re-use and final disposal, via environmentally safe means. The need for action in regard to waste minimisation at the production process through the use of clean technologies was the policy of the Fourth Environmental Action Programme (1987–92). The Fourth Programme also emphasised the hierarchical approach to waste management of the first three Programmes. During the period of the Fourth Environmental Action Programme, a Community Strategy for Waste Management was drawn up by the EU which set out the hierarchical structure of waste management as a long-term strategy for the EU (Gervais 2002(b)). The Fifth (1993–2000) and Sixth (2001–2010) Environmental Action Programmes incorporate into the policies and strategies of the EU, the concepts of ‘sustainable development’ and the integration of environmental decision-making and policy formulation into all major policy areas of the EU. One of the main objectives of the Sixth Environment Action Programme focuses on the sustainable management of natural resources and waste. The Programme identifies the reduction of waste as a specific objective and sets a target of reducing the quantity of waste going to final disposal by 20% by 2010 and by 50% by 2050. The actions required to achieve these targets include:
  • the development of a strategy for the sustainable management of natural resources by laying down priorities and reducing consumption;
  • the taxation of natural resource use;
  • establishing a strategy for the recycling of waste;
  • the improvement of existing waste management schemes;
  • investment into waste prevention and integration of waste prevention into other EU policies and strategies.
Box 1.2 European Governance
There are a number of bodies which are involved in the process of implementing, monitoring and further developing the legal system of the European Union. EU law is composed of three interdependent types of legislation. Primary legislation includes the major Treaties and Acts agreed by direct negotiation between the governments of the Member States, for example, the Single European Act (1987), the Maastricht Treaty (1992) and the Treaty of Amsterdam (1997). These agreements are then ratified by the national parliaments of each country. Secondary legislation is based on the Treaties and Acts and takes the form of Directives, Regulations and Decisions. The third type of legislation is Case Law based on judgements from the European Court of Justice.
There are four institutions that serve to govern the European Union.
1. The European Commission – The European Commission initiates all legislative proposals and ensures their implementation in all Member States. The Commission has a President and nineteen commissioners who are each responsible for one or more policy areas. The European Commission also has the important responsibility of administration of the EU budget. The Commission is divided into 25 Directorates-General which cover specific areas such as sustainable development, natural resources and environment and health.
2. The Council of the European Union – Laws initiated by the European Commission are put before the Council of the European Union, also known as the Council of Ministers, for adoption or rejection. The Council is therefore the main legislative body of the EU and is also responsible for major EU policy decisions. The Council is made up of one Minister from each Member State who is empowered to make decisions on behalf of their Government. Each Member State of the EU acts as President of the Council for a period of six months in rotation. The Council of the European Union, which comprises representatives at ministerial level, should not be confused with the European Council which brings together the heads of governments of each Member State.
3. The European Parliament – The European Parliament is made up of directly e...

Table of contents

  1. Cover
  2. Contents
  3. Title Page
  4. Copyright
  5. Dedication
  6. Preface
  7. 1 Introduction
  8. 2 Waste
  9. 3 Waste Recycling
  10. 4 Waste Landfill
  11. 5 Waste Incineration
  12. 6 Other Waste Treatment Technologies: Pyrolysis, Gasification, Combined Pyrolysis-Gasification, Composting, Anaerobic Digestion
  13. 7 Integrated Waste Management
  14. Index