An Introduction to Stellar Astrophysics
eBook - ePub

An Introduction to Stellar Astrophysics

Francis LeBlanc

Share book
  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

An Introduction to Stellar Astrophysics

Francis LeBlanc

Book details
Book preview
Table of contents
Citations

About This Book

An Introduction to Stellar Astrophysics aspires to provide the reader with an intermediate knowledge on stars whilst focusing mostly on the explanation of the functioning of stars by using basic physical concepts and observational results.

The book is divided into seven chapters, featuring both core and optional content:

  • Basic concepts
  • Stellar Formation
  • Radiative Transfer in Stars
  • Stellar Atmospheres
  • Stellar Interiors
  • Nucleosynthesis and Stellar Evolution and
  • Chemically Peculiar Stars and Diffusion.

Student-friendly features include:

  • Detailed examples to help the reader better grasp the most important concepts
  • A list of exercises is given at the end of each chapter and answers to a selection of these are presented.
  • Brief recalls of the most important physical concepts needed to properly understand stars.
  • A summary for each chapter
  • Optional and advanced sections are included which may be skipped without interfering with the flow of the core content.

This book is designed to cover the most important aspects of stellar astrophysics inside a one semester (or half-year) course and as such is relevant for advanced undergraduate students following a first course on stellar astrophysics, in physics or astronomy programs. It will also serve as a basic reference for a full-year course as well as for researchers working in related fields.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is An Introduction to Stellar Astrophysics an online PDF/ePUB?
Yes, you can access An Introduction to Stellar Astrophysics by Francis LeBlanc in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Astronomy & Astrophysics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2011
ISBN
9781119964971
1
Basic Concepts
1.1 Introduction
First, a definition must be given for what constitutes a star. A star can be defined as a self - gravitating celestial object in which there is, or there once was (in the case of dead stars), sustained thermonuclear fusion of hydrogen in their core. For example, in the Sun, hydrogen, which is the most abundant element in the Universe, is fused into helium via the nuclear reaction 41H → At the high temperatures found in4He + energy. Fusion is only present in the central regions of stars, because there exists a minimum threshold temperature at which this exothermic reaction can be ignited (which is of the order of ten million degrees for this particular reaction). For hydrogen nuclei (protons) to be fused, they must have a close approach on the order of distance at which the strong nuclear force comes into play. 1 The strong nuclear force is responsible for binding the nucleons (protons and neutrons) in the nucleus and contrary to gravity, for instance, its field of action is limited to a distance on the order of 10−15m. At the high temperatures found in the centres of stars, the kinetic energy of the protons is sufficient to vanquish the repulsive Coulomb force between them and bring the protons within the distance where the attractive strong nuclear force becomes dominant. Protons can then fuse together while emitting energy.
The energy emitted by thermonuclear reactions is given by Einstein’s famous E=Δmc2formula, where Δm is the difference in mass between the species on the left - hand and right - hand sides of the arrow found in the nuclear reaction given above and c is the speed of light in vacuum. However, the hydrogen burning reaction given above can be a bit misleading, since it suggests that four protons meet to form a helium nucleus. In reality, a series of nuclear reactions is needed to give this global reaction. On another note, even though only a small fraction of a star’s mass will be transformed to energy during its lifetime, it will suffice to compensate for the energy irradiated at its surface.
Details concerning various nuclear reactions of importance in stars will be discussed in Chapter 6.
Stars are formed following the gravitational collapse of cold molecular clouds found in the Universe. As the cloud or portions of it collapses, it can be shown (see Chapter 2) that approximately half of the gravitational energy gained is used to increase the internal temperature of the cloud and the remaining energy is irradiated as electromagnetic radiation in space. If the mass of the collapsed cloud is sufficient (i.e. more than approximately 8 % of the mass of the Sun), the central temperatures will attain a value superior to the threshold temperature for sustained hydrogen fusion, which would by definition, lead to star birth. The solar mass is M
images
= 1.989 × 1033g, where the symbol
images
represents the Sun.2 The physical properties of stars are often given in units of the corresponding value for the Sun. The gravitational collapse will continue until equilibrium is reached, where the nuclear energy generated per unit time (or its power) at the centre of the star equals the power output at its surface due to radiation emission. A star at this stage of its life is commonly called a main - sequence star. Since gravity has radial symmetry, a star will have a spherical shape (unless it has a high rotational speed). More details concerning stellar formation will be given in Chapter 2.
A star shines (or emits radiation) because of its high surface temperature. For example, the surface temperature of the Sun is approximately 5800 K, while its central temperature is approximately 16 million K. The decrease of the temperature as a function of distance from the centre is a natural occurrence that causes energy transport from the central regions to the surface of the Sun. Since the gas composing a star is characterized by an opacity to radiation, an observer looking at a star can only see its exterior regions, which is commonly called the photosphere or stellar atmosphere, having a geometrical depth of up to a few per cent of the stellar radius. This is similar to looking in a cloud of fog, being able to see only a certain distance before light signals are attenuated. The radiative field exiting a star depends on the temperature of these outer layers and is associated to their blackbody spectra. The physical properties of blackbodies will be discussed in Section 1.3 and will lead to an explanation why stars have different colours.
There are three modes of transportation of energy in stars. The most important is radiation. For this mode, the energy is transported when electromagnetic radiation diffuses from the central regions of stars towards its exterior. In regions where the radiative opacity becomes large, convection can dominate energy transport. Convection is the transport of energy by the vertical movements of cells of matter in the stars. Conduction is the third mode of transportation of energy in stars. However, this mode is rarely important. More details concerning energy transport will be discussed in Chapters 3 and 5.
As mentioned above, a star begins its life by transforming hydrogen to helium in its core. As time passes, the abundance of hydrogen gradually decreases in the star’s core, and eventually, the fuel for this particular nuclear process, namely hydrogen, will all be spent. As hydrogen is transformed into helium, the structure of the star readjusts. The core contracts causing an increase of the central temperatures until possibly, depending on the initial mass of the star, helium fuses to produce carbon via the well - known triple - α reaction: 34He → 12C + energy. Meanwhile, the outer regions of the star expand. The star then becomes what is called a red giant. The final destiny of a star depends almost solely on its initial mass; it will either become a white dwarf, a neutron star or a black hole. More details concerning stellar evolution will be given in Chapter 6.
For massive stars, a succession of nuclear reactions will occur during their different stages of evolution. The thermonuclear reactions in these stars are responsible for the synthesis of various elements, such as carbon, oxygen, silicon, etc. up to iron. This process is called nucleosynthesis. As known from the Big - Bang theory, at the beginning of the Universe, only hydrogen, helium and trace amounts of lithium were created. The formation of the other elements takes place in stars. Stars can therefore be seen as the Universe’s production factories, generating all atoms heavier than helium, except for some lithium. In astronomy, elements heavier than helium are called metals and the fraction of the mass composed of metals is called the metallicity (Z). The metallicity of outer layers of the Sun is approximately Z= 0.0169. Meanwhile, the mass fraction of hydrogen (X) and helium (Y) at the surface of the Sun are, respectively, X = 0.7346 and Y = 0.2485 (and therefore X + Y + Z= 1). All of the atoms of these heavy elements found on Earth were created in stars, which then exploded in the form of supernovae ejecting this enriched matter into space. Some of this enriched matter was later found in the primordial cloud from which the Sun and the Earth were created. Life itself would be impossible without the creation of the elements in stars.
This is why stars are fundamental for our existence and can be considered as the main building blocks of the Universe. It is then crucial to understand them via the study of stellar astrophysics. This field of study is fascinating since it incorporates all major fields of p...

Table of contents