Functional oxides have a wide variety of applications in the electronic industry. The discovery of new metal oxides with interesting and useful properties continues to drive much research in chemistry, physics, and materials science.
In Functional Oxides five topical areas have been selected to illustrate the importance of metal oxides in modern materials chemistry:
Noncentrosymmetric Inorganic Oxide Materials
Geometrically Frustrated Magnetic Materials
Lithium Ion Conduction in Oxides
Thermoelectric Oxides
Transition Metal Oxides - Magnetoresistance and Half-Metallicity
The contents highlight structural chemistry, magnetic and electronic properties, ionic conduction and other emerging areas of importance, such as thermoelectricity and spintronics.
Functional Oxides covers these complex concepts in a clear and accessible manner providing an excellent introduction to this broad subject area.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weāve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere ā even offline. Perfect for commutes or when youāre on the go. Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Functional Oxides by Duncan W. Bruce, Dermot O'Hare, Richard I. Walton, Duncan W. Bruce,Dermot O'Hare,Richard I. Walton in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Materials Science. We have over one million books available in our catalogue for you to explore.
Noncentrosymmetric Inorganic Oxide Materials: Synthetic Strategies and Characterisation Techniques
P. Shiv Halasyamani
Department of Chemistry, University of Houston, Houston, Texas, USA
1.1 INTRODUCTION
Materials that are crystallographically noncentrosymmetric (NCS), or acentric, are of current interest attributable to their functional properties, including piezoelectricity, ferroelectricity, and second-harmonic generation. Numerous relationships occur between these properties and crystal classes.[1] These relationships are shown in Figure 1.1, along with several well-known materials. It is instructive if we examine this figure more closely. If we examine the left-side of Figure 1.1, the symmetry dependent property we encounter is enantiomorphism, and the chiral crystal classes. All chiral materials must crystallise in one of eleven crystal classes, 1 (C1), 2 (C2), 3 (C3), 4 (C4), 6 (C6), 222 (D2), 32 (D3), 422 (D4), 622 (D6), 23 (T), or 432 (O). Materials found in any of these crystal classes have a āhandednessā, and a nonsuperimposable mirror image. The well-known chiral material α-SiO2[2, 3] crystallises in crystal class 32 (D3). If we examine the right-side of Figure 1.1, we encounter the ten polar crystal classes, 1 (C1), 2 (C2), 3 (C3), 4 (C4), 6 (C6), m (Cs), mm2 (C2v), 3m (C3v), 4mm (C4v), and 6mm (C6v). Materials found in these crystal classes have a permanent dipole moment. In fact LiIO3,[4, 5] which crystallises in crystal class 6 (C6) is both chiral and polar. The other materials shown: KTiOPO4 (KTP)[6] and Ba2NaNb5O15 (mm2 for both),[7] LiNbO3[8, 9] and β-BaB2O4 (3m for both),[10, 11] and BaTiO3 (4mm) are all āpurelyā polar. They all have a dipole moment, but are not chiral. Examples are also given of materials, CO(NH2)2 (urea)[12] and (NH4)H2PO4 (ammonium dihydrogen phosphate, ADP)[13] that crystallise in crystal class
, that are neither chiral nor polar, but are still noncentrosymmetric. Other symmetry-dependent properties that are of importance are second-harmonic generation and piezoelectricity. Except for materials that are found in crystal class 432 (O), all NCS materials exhibit the correct symmetry for second-harmonic generation and piezoelectric behaviour.
Figure 1.1 The relationships with respect to symmetry-dependent property between the noncentrosymmetric crystal classes are given along with representative compounds. Note that only five crystal classes, 1 (C1), 2 (C2), 3 (C3), 4 (C4), and 6 (C6) have the proper symmetry for all of the symmetry dependent properties. Adapted from Halasyamani and Poeppelmeier, 1998 [71].
Copyright 1998 American Chemical Society
Determining if a crystalline material is centrosymmetric or noncentrosymmetric is usually straightforward. From Friedelās law it is known that, during the diffraction process, if the incident wavelength is small compared with the absorption edge of any atom in the crystal, a centre of symmetry is introduced between oppositely related reflections. In other words I(hkl) = I(āhākāl). Friedelās law fails when the incident wavelength is similar to an atomās absorption edge. This anomalous scattering, when the imaginary part of the scattering factor becomes large, has been exploited to address a host of crystallographic problems.[14] Also, with the diffraction data the intensity distribution between a centric and acentric crystal differs. Statistical indicators of centricity have been developed by Wilson and Howell,[15, 16] but have been shown to be incorrect if the structure contains heavy atoms on special positions. Marsh has emphasised the importance of weak reflections if the centricity is in question.[17, 18] If weak reflections are removed, the statistical distribution tests can be strongly biased toward an acentric indication. Marsh also argues that when the diffraction data do not provide a clear choice between centrosymmetric and noncentrosymmetric space groups the centrosymmetric space group is preferred, even if disorder occurs.[17] The Platon suite of programs, specifically Addsym, can be used on refined structures to check for missing symmetry, e.g. inversion centres, as well as mistakes in crystal system or Laue class.[19]
In the past decade or so a number of strategies have been described whose aim was to increase the incidence of acentricity in any new material. In one manner or another, each of these strategies involves crystal engineering.[20] One question that needs to be addressed is why there are so few (relatively) NCS materials? It is estimated that only ~15% of all inorganic materials are NCS. This would indicate that in the vast majority of inorganic materials, the ābuilding blocksā of the structure are centrosymmetric, i.e. made up of regular polyhedra. These regular polyhedra are usually related by inversion symmetry. Thus, in order to design inorganic NCS materials, two challenges must be overcome. First, the building blocks of the structure must necessarily be intrinsically acentric. In other words, there must be a distortion that requires or forces the metal cation not to be on an inversion centre. If local centricity occurs, macroscopic centricity is observed. Secondly, these building blocks must be connected or related in the structure by noninversion-type symmetry. In other words, it is not sufficient to have only acentric polyhedra; these polyhedra must be related by acentric symmetry elements. Numerous researchers have developed strategies to address both issues.
The purpose of this chapter is to discuss noncentrosymmetric materials, their synthetic strategies as well as their symmetry dependent properties. We will begin by discussing the various strategies employed in synthesising new NCS materials, and then move on to physical property characterisation. Although we will be unable to discuss in detail all of the proposed strategies for synthesising NCS materials, we will describe the major ideas in the field. Finally, we will discuss the outlook for this field with multifunctional materials in mind.
1.3 ELECTRONIC DISTORTIONS
One manner in which the incidence of acentricity may be increased in any oxide material is to use cations susceptible to second-order Jah...