Challenging Math Problems
eBook - ePub

Challenging Math Problems

Terry Stickels

Share book
  1. 112 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Challenging Math Problems

Terry Stickels

Book details
Book preview
Table of contents
Citations

About This Book

`Fun and highly formidable math problems and puzzles from noted puzzle creator Terry Stickels.` — Window on Resources
Two friends wish to meet for breakfast twice a month throughout the year. In how many ways can they choose those two days so that they never meet on consecutive days?
You want to measure 30 seconds and you have two pieces of string, each of which burns for 40 seconds. How can you accomplish this without bending, folding, or cutting the strings?
A positive whole number is divisible by 3 and also by 5. When the number is divided by 7, the remainder is 5. What is the smallest number that could work?
These are but a few of this book's assembly of the most challenging puzzles imaginable ― and they require no background in higher math, just good thinking skills. Terry Stickels, a well-known puzzle-maker, has compiled 101 of some of the best and most entertaining problems ever published. All of the challenges, which range from probability puzzles to dice games, have two things in common: each offers the `Aha!` moment of discovery that puzzle-solvers love, and they're all fun. Complete solutions for all puzzles explain every detail.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Challenging Math Problems an online PDF/ePUB?
Yes, you can access Challenging Math Problems by Terry Stickels in PDF and/or ePUB format, as well as other popular books in Mathematics & Mathematics in Education. We have over one million books available in our catalogue for you to explore.

Information

Year
2015
ISBN
9780486808574
Edition
1
SOLUTIONS
1
Remove one student from each bench, including the one with four students to make a new bench of eight students. There must be seven full benches in order to do this. Therefore, there were seven benches of nine students plus the four for 67 students.
Following that there are some other ways to this. First:
Let
n
= Number of benches needed when seating eight per bench
m
= Number of benches needed when seating nine per bench
s
= Number of students
Writing the two equations for the numbers of students in terms of the seating on the benches, we have
s = 8n + 3
and s = 9m + 4.
Recognizing that the number of students is the same, we set the quantities equal:
8n + 3 = 9m + 4.
Then, noticing that n must be greater than m, we condense, to write
8n9m = 1.
Pulling out a common factor, we have
8(nm) – m = 1.
Then, noticing that the quantity (nm) is actually the difference in the number of benches used to seat the students (between the 8-per-bench and 9-per-bench approaches), we define the difference as
d = nm.
Then, substituting the difference d and rearranging, we have
m = 8d1.
Substituting back in one of the original equations yields
s = 9(8d – 1) + 4, or
s = 72d5.
Since the number of students in a class must be a positive number, we see by inspection that d must be greater than 0. So, setting d to 1, to get the minimum number of students satisfying the equation, we have
s = 72(1) – 5 = 67
Minimum number of students = 67
Here is another way to solve this:
We know that 3 + 8x = 4 + 9y
subtract 8y from both sides
3 + 8(xy) = 4 + y
The smallest value of (xy) is 1
(since x is the = number of benches with eight students per bench and y is the number with nine per bench, so x > y because it will take fewer benches to seat more students)
So the smallest value is when (xy) = 1 plug in the equation
3 + 8 = 4 + y
so y = 7.
That’s it!
x + 3 = y + 4
or xy = 1
which, according to what I said above, is the smallest positive difference in the number of benches!
2
5/8. When you switch the marbles to their new boxes, you have the probability of having
W and BW or
B and WW
In the four cases,
1/4 the time you get a white marble by choosing A. 1/4 the time you get a white marble from choosing D. In the case of choosing B, you get a white marble 1/2 of 1/4 or 1/8 the time.
Total probability of a white marble: 1/4 + 1/4 + 1/8 = 5/8.
3
The watermelons weigh 100 kg at the end of the day. In the morning, the 200 kg of watermelons are 99% water. So the non-water part of the watermelons has a mass of 2 kg. At the end of the day, the melons are 98% water. The remaining 2% is still the 2 kg of non-water material (which does not change when the water evaporates). If 2% equals 2 kg, then 100% equals 100 kg. So, Molly has 100 kg of watermelons left at the end of the day.
4
From lowest to highest value:
5
–5. One way to solve this is to examine the difference between the numbers to see if a pattern develops.
Once you see a pattern, then work your way back to the top to find the first number. Keep in mind when finding the differences between numbe...

Table of contents