Basic Algebra I
eBook - ePub

Basic Algebra I

Second Edition

  1. 528 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Basic Algebra I

Second Edition

About this book

A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.
Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as Lie and Jordan algebras, lattices, and Boolean algebras. Exercises appear throughout the text, along with insightful, carefully explained proofs. Volume II comprises all subjects customary to a first-year graduate course in algebra, and it revisits many topics from Volume I with greater depth and sophistication.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Basic Algebra I by Nathan Jacobson in PDF and/or ePUB format, as well as other popular books in Mathematics & Algebra. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
Print ISBN
9780486471891
eBook ISBN
9780486135229
Edition
2
Subtopic
Algebra
1
Monoids and Groups
The theory of groups is one of the oldest and richest branches of algebra. Groups of transformations play an important role in geometry, and, as we shall see in Chapter 4, finite groups are the basis of Galois’ discoveries in the theory of equations. These two fields provided the original impetus for the development of the theory of groups, whose systematic study dates from the early part of the nineteenth century.
A more general concept than that of a group is that of a monoid. This is simply a set which is endowed with an associative binary composition and a unit—whereas groups are monoids all of whose elements have inverses relative to the unit. Although the theory of monoids is by no means as rich as that of groups, it has recently been found to have important “external” applications (notably to automata theory). We shall begin our discussion with the simpler and more general notion of a monoid, though our main target is the theory of groups. It is hoped that the preliminary study of monoids will clarify, by putting into a better perspective, some of the results on groups. Moreover, the results on monoids will be useful in the study of rings, which can be regarded as pairs of monoids having the same underlying set and satisfying some additional conditions (e.g., the distributive laws).
A substantial part of this chapter is foundational in nature. The reader will be confronted with a great many new concepts, and it may take some time to absorb them all. The point of view may appear rather abstract to the uninitiated. We have tried to overcome this difficulty by providing many examples and exercises whose purpose is to add concreteness to the theory. The axiomatic method, which we shall use throughout this book and, in particular, in this chapter, is very likely familiar to the reader: for example, in the axiomatic developments of Euclidean geometry and of the real number system. However, there is a striking difference between these earlier axiomatic theories and the ones we shall encounter. Whereas in the earlier theories the defining sets of axioms are categorical in the sense that there is essentially only one system satisfying them—this is far from true in the situations we shall consider. Our axiomatizations are intended to apply simultaneously to a large number of models, and, in fact, we almost never know the full range of their applicability. Nevertheless, it will generally be helpful to keep some examples in mind.
The principal systems we shall consider in this chapter are: monoids,...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Dedication
  5. Contents
  6. Preface
  7. Preface to the First Edition
  8. Introduction: Concepts From Set Theory. The Integers
  9. 1 Monoids And Groups
  10. 2 Rings
  11. 3 Modules Over A Principal Ideal Domain
  12. 4 Galois Theory of Equations
  13. 5 Real Polynomial Equations and Inequalities
  14. 6 Metric Vector Spaces and The Classical Groups
  15. 7 Algebras Over A Field
  16. 8 Lattices And Boolean Algebras
  17. Appendix
  18. Index