Number Theory
eBook - ePub

Number Theory

  1. 288 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Number Theory

About this book

Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.
In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.
Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.
Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weโ€™ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere โ€” even offline. Perfect for commutes or when youโ€™re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Number Theory by George E. Andrews in PDF and/or ePUB format, as well as other popular books in Mathematics & Number Theory. We have over one million books available in our catalogue for you to explore.

Information

PART I

MULTIPLICATIVITY-DIVISIBILITY
Part I is devoted to multiplicative problems; these are sometimes called divisibility problems, since division is the inverse of multiplication.
The knowledge of divisibility that we gain in the first two chapters leads us to our first goal, the fundamental theorem of arithmetic, which discloses the important role of primes in multiplicative number theory. Chapter 3 introduces combinatorial techniques for solving important divisibility problems and answering other number-theoretic questions. In order that we can study divisibility problems in greater depth, Chapters 4 and 5 develop the theory of congruences. Chapter 6 discusses some of the important functions related to multiplication and division, for example the number d(n) of divisors of n and the sum ฯƒ(n) of the divisors of n. Our results on congruences are extended in Chapter 7. The final chapter of Part I is concerned with the distribution of primes.
CHAPTER 1

BASIS REPRESENTATION
Our objective in this chapter is to prove the basis representation theorem (Theorem 1โ€“3). First we need to understand the principle of mathematical induction, a tool indispensable in number theory.
1โ€“1PRINCIPLE OF MATHEMATICAL INDUCTION
Let us try to answer the following question: What is the sum of all integers from one through n, for any positive integer n? If n = 1, the sum equals 1 because 1 is the only summand. The answer we seek is a formula that will enable us to determine this sum for each value of n without having to add the summands.
Table 1โ€“1 lists the sum Sn of the first n consecutive positive integers for values of n from 1 through 10. Notice that in each case Sn equals one-half the product of n and the next integer; that is,
image
for n = 1, 2, 3, โ€ฆ, 10. Although this formula gives the corr...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Preface
  6. Contents
  7. Part I Multipucativity โ€“ Divisibility
  8. Part II Quadratic Congruences
  9. Part III Additivity
  10. Part IV Geometric Number Theory
  11. Appendices
  12. Notes
  13. Suggested Reading
  14. Bibliography
  15. Hints and Answers to Selected Exercises
  16. Index of Symbols
  17. Index