Advanced Number Theory
eBook - ePub

Advanced Number Theory

Harvey Cohn

Share book
  1. 288 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Advanced Number Theory

Harvey Cohn

Book details
Book preview
Table of contents
Citations

About This Book

`A very stimulating book ... in a class by itself.` — American MathematicalMonthly
Advanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.
The book is divided into three parts. Part I is concerned with background material — a synopsis of elementary number theory (including quadratic congruences and the Jacobi symbol), characters of residue class groups via the structure theorem for finite abelian groups, first notions of integral domains, modules and lattices, and such basis theorems as Kronecker's Basis Theorem for Abelian Groups.
Part II discusses ideal theory in quadratic fields, with chapters on unique factorization and units, unique factorization into ideals, norms and ideal classes (in particular, Minkowski's theorem), and class structure in quadratic fields. Applications of this material are made in Part III to class number formulas and primes in arithmetic progression, quadratic reciprocity in the rational domain and the relationship between quadratic forms and ideals, including the theory of composition, orders and genera. In a final concluding survey of more recent developments, Dr. Cohn takes up Cyclotomic Fields and Gaussian Sums, Class Fields and Global and Local Viewpoints.
In addition to numerous helpful diagrams and tables throughout the text, appendices, and an annotated bibliography, Advanced Number Theory also includes over 200 problems specially designed to stimulate the spirit of experimentation which has traditionally ruled number theory.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Advanced Number Theory an online PDF/ePUB?
Yes, you can access Advanced Number Theory by Harvey Cohn in PDF and/or ePUB format, as well as other popular books in Matemáticas & Teoría de números. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
ISBN
9780486149240

PART 1

BACKGROUND
MATERIAL

chapter I

Review of elementary number theory and group theory

NUMBER THEORETIC CONCEPTS

1. Congruence
We begin with the concept of divisibility. We say1 a divides b if there is an integer c such that b = ac. If a divides b, we write a | b, and if a does not divide b we write a × b. If k ≥ 0 is an integer for which ak | b but ak+1 × b, we write ak || b, which we read as “ak divides b exactly.”
If m | (x − y), we write
image
and say that x is congruent to y modulo m. The quantity m is called the modulus, and all numbers congruent (or equivalent) to x (mod m) are said to constitute a congruence (or equivalence) class. Congruence classes are preserved under the rational integral operations, addition, subtraction, and multiplication; or, more generally, from the congruence (1) we have
image
where f(x) is any polynomial with integral coefficients.
2. Unique Factorization
It can be shown that any two integers a and b not both 0 have a greatest common divisor d(>0) such that if t | a and t | b then t | d, and conversely, if t is any integer (including d) that divides d, then t | a and t | b. We write d = gcd (a, b) or d = (a, b). It is more important that for any a and b there exist two integers x and y such that
image
If d = (a, b) = 1, we say a and b are relatively prime.
One procedure for finding such integers x, y is known as the Euclidean algorithm. (This algorithm is referred to in Chapter VI in another connection, but it is not used directly in this book.)
We make more frequent use of the division algorithm, on which the Euclidean algorithm is based: if a and b are two integers (b ≠ 0), there exists a quotient q and a remainder r such that
image
and, most important, ar(mod b) where
image
The congruence classes are accordingly called residue (remainder) classes.
From the foregoing procedure it follows that if (a, m) = 1 then an integer x exists such that (x, m) = 1 and axb (mod m). From this it also follows that the symbol b/a (mod m) has integral meaning and may be written as x if (a, m) = 1.
An integer p greater than 1 is said to be a prime if it has no positive divisors except p and 1. The mo...

Table of contents