The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Frequently asked questions
Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go. Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Introduction to Proof in Abstract Mathematics by Andrew Wohlgemuth in PDF and/or ePUB format, as well as other popular books in Mathematics & Logic in Mathematics. We have over one million books available in our catalogue for you to explore.
We begin this section with a review of some notation and informal ideas about sets now common in the school curriculum. A set is a collection of things viewed as a whole. The things in a set are called elements or members of the set. The expression “x
A” means that x is a member of set A and is read “x is an element of A” or “x is a member of A”. The expression “x ∉ A” means that x is not a member of A. We will assume that all sets are formed of elements from some universal set
under consideration. The set of real numbers will be denoted by
, integers by
, and positive integers by
.
We will not give a formal definition of set. It will be an undefined term—a starting point in terms of which we will define other things. While the idea of a set is undefined, we will assume that any particular set may be defined by giving a rule for deciding which elements of the universal set are in the particular set and which are not.
For example, if
is our universal set, then the set of all real numbers between 0 and 1 is written {x
| 0 < x < 1}. This is read “the set of all x in
such that zero is less than x and x is less than one”. In the expression “{x
| 0 < x < 1}”, the symbol “x” is used as a local v...