Digital Filters
eBook - ePub

Digital Filters

  1. 304 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Digital Filters

About this book

Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.
Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the strongest need for an understanding of digital filtering do not have a strong background in mathematics or electrical engineering. Thus, this book assumes only a knowledge of calculus and a smattering of statistics (reviewed in the text). Adopting the simplest, most direct mathematical tools, the author concentrates on linear signal processing; the main exceptions are the examination of round-off effects and a brief mention of Kalman filters.
This updated edition includes more material on the z-transform as well as additional examples and exercises for further reinforcement of each chapter's content. The result is an accessible, highly useful resource for the broad range of people working in the field of digital signal processing.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Digital Filters by Richard W. Hamming in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Civil Engineering. We have over one million books available in our catalogue for you to explore.
1
Introduction
1.1WHAT IS A DIGITAL FILTER?
In our current technical society we often measure a continuously varying quantity. Some examples include blood pressure, earthquake displacements, voltage from a voice signal in a telephone conversation, brightness of a star, population of a city, waves falling on a beach, and the probability of death. All these measurements vary with time; we regard them as functions of time: u(t) in mathematical notation. And we may be concerned with blood pressure measurements from moment to moment or from year to year. Furthermore, we may be concerned with functions whose independent variable is not time, for example the number of particles that decay in a physics experiment as a function of the energy of the emitted particle. Usually these variables can be regarded as varying continuously (analog signals) even if, as with the population of a city, a bacterial colony, or the number of particles in the physics experiment, the number being measured must change by unit amounts.
For technical reasons, instead of the signal u(t), we usually record equally spaced samples un of the function u(t). The famous sampling theorem, which will be discussed in Chapter 8, gives the conditions on the signal that justify this sampling process. Moreover, when the samples are taken they are not recorded with infinite precision but are rounded off (sometimes chopped off) to comparatively few digits (see Figure 1.1-1). This procedure is often called quantizing the samples. It is these quantized samples that are available for the processing that we do. We do the processing in order to understand what the function samples un reveal about the underlying phenomena that gave rise to the observations, and digital filters are the main processing tool.
image
FIGURE 1.1-1SAMPLING AND QUANTIZATION OF A SIGNAL
digital filters are the main processing tool
It is necessary to emphasize that the samples are assumed to be equally spaced; any error or noise is in the measurements un. Fortunately, this assumption is approximately true in most applications.
Suppose that the sequence of numbers {un} is such a set of equally spaced measurements of some quantity u(t), where n is an integer and t is a continuous variable. Typically, t represents time, but not necessarily so. We are using the notation un = u(n). The simplest kinds of filters are the nonrecursive filters; they are defined by the linear formula
image
The coefficients ck are the constants of the filter, the un-k are the input data, and the yn are the outputs. Figure 1.1-2 shows how this formula is computed. Imagine two strips of paper. On the first strip, written one below the other, are the data values un-k. On the second strip, with the values written in the reverse direction (from bottom to top), are the filter coefficients ck. The zero subscript of one is opposite the n subscript value of the other (either way). The output yn is the sum of all the products ckun-k. Having computed one value, one strip, say the coefficient strip, is moved one space down, and the new set of products is computed to give the new output yn+1. Each output is the result of adding all the products formed from the proper displacement between the two zero-subscripted terms. In the computer, of course, it is the data that is “run past” the coefficient array {ck}.
This process is basic and is called a convolution of the data with the coefficients. It does not matter which strip is written in the rever...

Table of contents

  1. Contents
  2. Preface to the Third Edition
  3. 1 Introduction
  4. 2 The Frequency Approach
  5. 3 Some Classical Applications
  6. 4 Fourier Series: Continuous Case
  7. 5 Windows
  8. 6 Design of Nonrecursive Filters
  9. 7 Smooth Nonrecursive Filters
  10. 8 The Fourier Integral and the Sampling Theorem
  11. 9 Kaiser Windows And Optimization
  12. 10 The Finite Fourier Series
  13. 11 The Spectrum
  14. 12 Recursive Filters
  15. 13 Chebyshev Approximation And Chebyshev Filters
  16. 14 Miscellaneous
  17. Index